

GEOTECHNICAL & ENVIRONMENTAL SERVICES

Detailed Site Investigation

Prepared For: Architecture Design Studio Pty Ltd Address: 4-8 Hoxton Park Road, Liverpool, NSW, 2170 Job No: AG-369_1 Date: 06-05-19

> Australian Geotechnical Pty Ltd ABN 27 611 088 192

> > Email: info@austgeo.com.au

TABLE OF CONTENTS

Description

Page No

Table of Contents	
Executive Summary	4
1.0 Introduction	6
1.1 Overview	6
2.0 Scope of Work	6
3.0 Site Description	7
4.0 Site History	7
4.1 Previous Land Use and Historical Photographs	7
4.2 Historic Land Titles	8
4.3 Contaminated Land Register	8
4.4 Search of Protection of the Environment	8
4.5 Workcover NSW Records	8
4.6 Product Loss and Spill Records	9
4.7 Section 149 Certificate	9
4.8 Land Zoning	9
4.9 Regional Geology & Topography	9
4.10 Groundwater and Meteorology	9
4.11 Acid Sulfate Soil	10
5.0 Site Condition and Surrounding Environment	10
6.0 Areas of Environmental Concern	10
7.0 Conceptual Site Model	11
8.0 Sampling and Analysis Plan and Methodology	13
8.1 DQO	13
8.2 DQO Process	13
8.3 Sampling Methodology	16
9.0 Field Quality Assurance and Quality Control	16
9.1 Decontamination Procedures	17
9.2 Duplicate and Split Sampling	17
9.3 Trip Spike	18
10.0 Laboratory Quality Assurance and Quality Control	18
10.1 Laboratory Accreditation	18
10.2 Sample Holding Times	19
10.3 Analytical Methods Used and PQL	19
10.4 Laboratory Quality Control	19
11.0 Quality Assessment and QC data evaluation	20
11.1 Document Completeness	20
11.2 Data Completeness	20
11.3 Data Representativeness	20
11.4 Data Comparability	20
11.5 Data Precision and Accuracy	21

11.6 Data Evaluation	21
12.0 Basis for Assessment Criteria	21
13.0 Laboratory Test Results	24
13.1 Heavy Metals	25
13.2 OCP, OPP, PCB and Phenol	25
13.3 TPH, PAH, and BTEX	25
13.4 Asbestos Test Results	25
14.0 Site Characterization	25
15.0 Discussion	26
16.0 Conclusion and Recommendations	26

References

Limitations

Appendix A Borehole Location Plan and LogsAppendix B Laboratory Test ResultsAppendix C Supporting Information

List of Abbreviations

A list of the common abbreviations used throughout this report is provided below.

ACM AEC AGST AHD bgs	 Asbestos Containing Material Area of Environmental Concern Above Ground Storage Tank Australian Height Datum Below ground surface
CSM	- Conceptual site model
BTEX	- Benzene, toluene, ethylbenzene and xylenes
B(a)P	- Benzo(a)pyrene
CCA	- Copper Chromate Arsenate
COC	- Contaminants of Concern
AG	- Australian Geotechnical Pty Ltd
	 NSW Department of Environment and Conservation / - NSW Department of Environment, Climate Change and Water
DQI	- Data quality indicator
DQOs	- Data Quality Objectives
DWE	- NSW Department of Water and Energy
EPA	 NSW Environment Protection Authority
ESA	- Environmental Site Assessment
ha	- Hectare
HIL ESL	- Health based investigation level
HSL	0 0
LOR	- Limit of Reporting
OEH	- Office of Environment and Heritage
PAHs	- Polycyclic aromatic hydrocarbons
PID	- Photo-ionisation Detector
PCB	- Polychlorinated Biphenyl
PQL	- Practical Quantitation Limit
QA/QC	- Quality Assurance/Quality Control
RPD	- Relative Percentage Difference
SAQP TRH	 Sampling, Analysis and Quality Plan Total Recoverable Hydrocarbons (previously Total Petroleum
Hydroca	
TSS	- Total Suspended Solids
UST	- Underground Storage Tank
VOC	- Volatile Organic Compound

Executive summary

This executive summary presents a synopsis of the Detailed Site Investigation Assessment for Architecture Design Studio Pty Ltd at the site; 4-8 Hoxton Park Road, Liverpool, NSW, 2170. This report has been prepared to assess the suitability of the site which will comprise demolition of the existing structure to allow for construction of a mixed-use development comprising of residential and commercial spaces together with two (2) to (3) levels of basement car parking.

The object of the Detailed Site Investigation was to ascertain whether the site presents a risk to human health and/or the environment arising from any past/present activities at the site or neighbouring properties. Laboratory testing was undertaken to re-inforce the results of the desktop study. The scope of work included a documentary review and a site investigation, chemical analyses of twelve (12) samples together with preparation of this report.

Based on historical information reviewed, the site comprised of vacant land until receiving a residential cottage in the 1940s, since then the site was developed in the 1970s with a commercial structure constructed in conjunction with concrete/asphaltic concrete cover. Since being developed the land is likely to have been used for commercial purposes (motorcycle sales, hire store and motor mechanic).

The following areas were identified in the conceptual site model as areas of environmental concern;

- Potential importation of uncontrolled fill that may contain various contaminants;
- Car park areas where leaks and spills from cars may have occurred;
- Building degradation which includes potential lead and asbestos contamination.

No records are held by the EPA of known or regulated contaminated sites in the vicinity (200m) of the subject site.

Search of Protection of the Environment Operations Public Register (POEO) revealed no licensed and delicensed premises in the vicinity (200m) of the subject site.

An intrusive soil investigation was conducted on the site. A total of seven (7) bore holes were excavated across the site in a systematic based pattern. Soil samples were collected from each borehole location. Selected samples were analysed for a range of analytes outlined within section 6.0 of this report. These samples were selected based on site observations (odour, staining etc), and their position within the borehole (i.e. fill or natural).

Eleven (11) soil samples and one (1) rinsate water sample was recovered and sent to a NATA accredited laboratory for analysis. The concentrations of samples analysed revealed levels above the relevant assessment criteria.

The results of the chemical analyses indicate that the site does not present a risk to human health and the environment. The site can be made suitable for the proposed construction of a mixed-use development comprising of residential and commercial spaces together with two (2) to (3) levels of basement car parking, subject to the following recommendations:

- Confirm that the location of samples numbered E2, E3 and E6 which presented slightly elevated heavy metal and TRH contamination above the EIL/ESL guideline values, are not located within deep soil or vegetated areas post development.
- Undertake a hazardous material assessment (HAZMAT) report to confirm the presence/absence of hazardous materials within site features. Hazardous material must be removed by a competent and fully licensed contractor with a clearance certificate undertaken from a licensed asbestos assessor; and
- Investigation has not been undertaken in the existing sheds and structures, beneath concrete slabs and other site feature footprints. It is recommended that validation of the soils beneath the dwellings, sheds and site features is undertaken, by an appropriately qualified environmental consultant, following demolition and removal of the concrete slab to assess the potential for impact.

This report was carried out in accordance with current NSW EPA guidelines, however, it is possible that further contaminated soils may be present between sampling locations.

1.0 INTRODUCTION

1.1 Overview

Australian Geotechnical (AG) have undertaken a Detailed Site Investigation with testing and analysis as requested by Architecture Design Studio Pty Ltd at the site; 4-8 Hoxton Park Road, Liverpool, 2170, NSW. This report has been prepared to assess the suitability of the site which will comprise construction of a mixed-use development comprising of residential and commercial spaces together with two (2) to (3) levels of basement car parking.

2.0 SCOPE OF WORK

This Contamination Assessment has been prepared in general accordance with the following regulatory framework:

- NSW Environment Protection Authority (EPA) "Guidelines for Consultants Reporting on Contaminated Sites" (2011);
- NEPM (2013), Schedule B2 Guideline on Site Characterisation;
- State Environment Protection Policy 55 (SEPP 55). Remediation of Land Under the Environmental Planning and Assessment Act 1997; and
- National Environment Protection (Assessment of Site Contamination) Measure National Environmental Protection Council 2013.

The following scope of work was conducted as part of this assessment:

- Review of desktop study report to assist in identification of potential contamination issues:
 - Data from Environment Protection Authority.
 - Data from the Protection of the Environment Operations Public Register (POEO).
 - Current and past zoning of the land.
- Review of soils and geological maps;
- Review of previous reporting at the site;
- Site Inspection by a representative from AG to ascertain current activities, and any visible signs of contamination;
- Collection of soil samples according to a sampling plan;
- Review and summarise previous reporting undertaken at the site;
- Chemical analysis by a NATA accredited laboratory;
- Assessment of the results of the chemical analysis against the appropriate guidelines; and
- Preparation of a Detailed Site Investigation Report.

3.0 SITE DESCRIPTION AND AESTHETICS

The subject sites are rectangular, legally defined as Lot 1 (No 8) in Deposited Plan 860799. The site is bounded by Lot 71 DP1004792 to the east and south, Gillespie Street to the west with Hoxton Park Road situated to the north. The site measures approximately 35m along the Hoxton Park Road frontage and up to 47.7m deep, encompassing a total area of approximately 1,682m².

At the time of the site inspection, the following observations were made:

- A commercial structure occupies the site, constructed mainly of metal cladding, brick and glass;
- Concrete slabs at the site were generally in good condition with minor cracks and heavy staining noticed;
- The site is approximately 95% concrete/asphaltic concrete covered;
- No access was available to the internals of the existing structure;
- No surface standing water was noticed at the site; and
- There were no indicators of underground storage tanks within the site.

4.0 SITE HISTORY

In order to ascertain the site history, a documentary review of past and present land use at the subject site and the surrounding area has been undertaken by AG, the veracity of the information collected is considered to be relatively high, as the majority of the information was obtained from government sources where possible. The information is summarised as follows:

4.1 **Previous Land Use and Review of Historical Photographs**

Aerial Photographs were obtained by this office from the NSW Department of Lands Office. The aerial photographs were reviewed to assess the likely past uses of the site with the findings summarised below;

1947 - A small cottage can be seen at the northern side of the site, Gillespie Street to the east and Hoxton park Road to the north have been formed. The surrounding area is generally being utilised for residential purposes.

1960s – No changes to the site. However, the site appears to be utilised as a vehicle storage area.

1970s – The current structure appears to have been constructed. Significant development has occurred around the subject site. Residential dwellings can still be seen south of the structure.

1980s – No significant changes.

Current – Significantly more development has occurred around the subject site. The structure appears to have been extended to the south.

4.2 Historic land titles

A review of historical transactions and titles held at the NSW Department of Lands offices was conducted by AG to identify the land owners and potential land uses with regards to possible contamination. The current registered proprietors have been owners since 2013, therefore an interview with the current owner/s was not considered necessary as part of the historical review. The results of the title searches are summarised below in table 1 below;

Date of acquisition and held term	Registed proprietor(s) & occupations where available
2013-Current	ZHC Investments Pty Ltd
2013	Grattack Pty Ltd
1988	Highside Motorcycles
1984-1988	Beaconril Developments Pty Ltd

Table 1 – Land Title Transactions Lot 1 (No 8) in Deposited Plan 860799

4.3 Search of Contaminated Land Management Register (NSW EPA)

A summary of the search of the NSW EPA Contaminated Land Management record of notices for the Liverpool area can be found. No notices have been issued to the subject site. Furthermore, the listed sites on the register are situated at such a distance (greater than 200m), that they are not believed to have provided a potential contamination risk to the subject property.

4.4 Search of Protection of the Environment Operations Public Register (POEO) of Licensed and Delicensed Premises

A search of the POEO public register of licensed and delicensed premises (DECC) indicated that no licensed or delicensed premises were located within the immediate surrounding area of the site (within 200m).

4.5 Work Cover NSW Records

A search of the records held by SafeWork NSW did not locate any records relating to any information on Storage of Hazardous Chemicals for the site.

4.6 **Product Spill & Loss History**

No external information was provided for any product spill and loss. However, based on the site inspection, no signs of chemical staining was observed.

4.7 Section 149 Certificates

At the time of reporting, this office could not access The Planning Certificate – Section 149 of the Environmental Planning & Assessment Act 1979.

4.8 Land Zoning

This office understands that the subject site is currently zoned as R4 – High Density Residential.

4.9 Regional Geology and Topography

The Soil Landscape Map of Sydney (soil Landscape Series Sheet 9030bt, Scale 1:100,000, 2002), prepared by the Soil Conservation Service of NSW, indicates that the site is located within the Blacktown geological unit. This units generally comprises of *Wianamatta Group—Ashfield Shale consisting of laminite and dark grey siltstone, Bringelly Shale which consists of shale with occasional calcareous claystone, laminite and infrequent coal, and Minchinbury Sandstone consisting of fine to medium-grained quartz lithic sandstone.*

Gently undulating rises on Wianamatta Shale with local relief 10–30 m and slopes generally >5% but occasionally up to 10%. Crests and ridges are broad (200–600 m) and rounded with convex upper slopes grading into concave lower slopes. Outcrops of shale do not occur naturally on the surface. They may occur, however, where soils have been removed.

4.10 Groundwater and Meteorology

A search of the NSW Department of Primary Industries Office of Water registered groundwater bores was undertaken by AG, with a search radius of 500m around the site. No groundwater bores were registered within the search radius. However, based on local groundwater knowledge, it is anticipated that the groundwater seepage may be in the order of 4.0m-8.0m below surface level in the form of seepage through the bedrock weathering.

Key meteorological data for the Milperra Bridge weather station available on the Bureau of Meteorology (BOM) website has been reviewed and AG note the following:

- The highest mean rainfall occurs in February, with a total of 87.1mm; and
- The lowest mean rainfall occurs in July, with a total of 23.0cm.

4.11 Acid Sulfate Soil

To determine whether there is a potential for acid sulfate soils to be present at the site, reference was made to the NSW Office of Environment and Heritage (OEH), eSPADE map viewer. A review of the map indicated that the site is in an area of "No known occurrence" in regards to Acid Sulfate Soil.

5.0 SITE CONDITION AND SURROUNDING ENVIRONMENT

A site investigation was conducted on 5th May 2019. The field observations are summarized in table 2 below:

Parameter	Observation
Visible observations on soil contamination	Small areas of staining within historical car parking and workshop areas were observed. No odours were
	documented.
Presence of drums, fill or	None observed. No visible indicators of underground fuel
waste materials	tanks (bowsers or venting pipes).
Presence of fill	Minor fill was evident across the entire site
Flood potential	Not evident.
Relevant sensitive	The nearest surface water body is Georges River situated
environments	815m, down gradient, east of the subject site.
Asbestos	No visual asbestos identified

Table 2 – Summary of Field Observations

6.0 AREAS OF ENVIRONMENTAL CONCERN

Based on historical information reviewed, the site comprised of vacant land until receiving a residential cottage in the 1940s, since then the site was developed in the 1970s with a commercial structure constructed in conjunction with concrete/asphaltic concrete cover. Since being developed the land is likely to have been used for commercial purposes (motorcycle sales, hire store and motor mechanic).

The potential for the site to be contaminated from on-site sources and off-site sources was considered by AG. Based on the findings of our site inspection and site history review actual or potential contamination sources were identified as low. Based on the site inspection, site history, previous reporting and review of available information from the desktop study, the potential Areas of Environmental Concern (AEC) and their associated Contaminants of Concern (CoCs) for the site were identified. These are summarised in the conceptual site model in table 3 below;

Table 3 – Contaminants of Concern

Potential AEC	Potentially contaminating activity	Likelihood of Site Impact	Potential CoCs	Comments
Entire Site	Importation of fill material from unknown origin.	Low	Metals, TPH, BTEX, PAH, OCP, OPP, PCB, Asbestos, Phenols, Cyanide	Based on observations and site topography, the presence of imported fill material is likely to be minimal
Dwellings and garage/ garden shed	Building degradation	Low	Heavy metals & Asbestos	These structures were in fair to good condition. Therefore, the potential asbestos contamination in the surficial soil layer is considered to be low
Car Parking Areas and previous site use as a motor mechanic	Leaks from vehicles	Low	TPH, Metals, BTEX, PAH	Car parking surfaces were generally in good condition, however some staining and bare patches were observed

7.0 CONCEPTUAL SITE MODEL

In accordance with NEPM (2013), *Schedule B2 – Guideline on Site Characterisation* and to assist in collecting data for the site. The Conceptual Site Model (CSM) detailed in table 4 below considers the potential risks associated with the plausible pollution linkages between the following features:

- Potential human receptors that may be impacted by site contamination are current and future occupants at the site, excavation/construction and maintenance workers during demolition and construction phase of the project and the general public within close proximity to the site;
- Potential sources of contamination, location and the contaminants of concern identified are presented in Section 6.0. Only potential areas of concern with a likelihood of site impact rating of low to high are included;
- Potential exposure pathways;
- Whether the linkage between each source-pathway-receptor is complete, based on our current site inspection, historical information presented and proposed future site condition;

- Potential pollution of surface water could occur through downward and lateral migration of leachable/soluble contaminants. However, this linkage is considered to be unlikely given the low risks to groundwater; and
- The site is <u>not</u> in an area of putrescible waste landfill, 'Inert' waste landfill, uncontrolled fill, reclaimed wetlands and mangroves, organic waste disposal, coal workings, burial grounds or petroleum and coal-seam gas exploration, therefore a risk assessment of bulk ground gases in not considered necessary.

Table 4 – Conceptual Site Model						
Potential	Potential	Exposure	Complete	Risk	Justification	
Sources	Receptor	Pathway	Linkages			
Importation of fill material from	Site Users, General Public,	Dermal Contact, Inhalation of	Yes (current)	Moderate	Direct contact with soil outside of hardstand areas	
unknown	Construction	Dust.	Yes	Low to		
	Workers	Dusi.			Fill material of	
origin.	VVOIKeis	Volatilisation	(future)	Moderate	unknown origin will	
Puilding					remain in future	
Building		and migration of volatile			open space areas	
degradation					with direct soil	
Leaks from		organic contaminants			access. Dermal	
vehicles and					contact, incidental	
		through the unsaturated			ingestion and	
previous site		zone of soil			VOCs will be	
use as a motor					limited to	
mechanic		leading to indoor			landscaped areas	
mechanic		inhalation.			post development.	
		This pathway				
		is considered				
		to be open				
		within future				
		landscaping				
		areas				
	Georges	Offsite	No	Negligible	Georges River is	
	River	migration of impacted groundwater	(current)		down gradient from the subject site. Soil landscapes indicates that the upper residual soil horizon is generally impervious, therefore offsite migration is deemed negligible.	

Table 4 – Conceptual Site Model

8.0 SAMPLING & ANALYSIS PLAN AND SAMPLING METHODOLOGY

Sampling and analysis was undertaken in order to assess the nature, location and likely distribution of any contamination present at the subject site specifically within areas identified by AG, and also any potential risk posed to human health or the environment. Test results were compared to the relevant New South Wales Environment Protection Authority (NSW EPA) criteria.

The guidelines produced by NSW EPA, 1995 'Sampling Design Guidelines for Contaminated Sites', state that a minimum of seven (7) sampling locations is required for a site with an area of 1682m². Hence, Seven (7) boreholes were excavated across the site in an approximate grid pattern (see Figure 1). Eleven (11) soil samples and one (1) rinsate water sample was sent to a NATA accredited laboratory. Samples were selected based on site observations (odour, staining etc), and their position within the borehole (i.e. fill or natural).

8.1 Data Quality Objectives (DQO)

Data Quality Objectives (DQO) are qualitative and quantitative criteria that:

- (a) Clarify study objectives.
- (b) Define appropriate types of data to collect.
- (c) Specify the tolerable levels of potential decision making errors.

The purpose of the DQO process is to ensure that the data collection activities are focused on:

- (a) collecting the information needed to make decisions; and
- (b) answering the relevant questions leading up to such decisions.

8.2 DQO Process

The DQO process consists of seven distinct steps:

• State the Problem

As identified in section 7.0 above, the site has multiple potential sources of contamination. The problem is that, due to the potential contamination, an investigation is required to assess whether fill material and underlying natural soils have been contaminated by past/present activities. The objective is to provide information on concentrations of the identified contaminants of concern in the site soils in order to assess sites suitability for the proposed development.

• Identify the Decision

If contamination is detected, what is the extent of the impact, are levels detected above relevant assessment criteria, does the site pose a risk to human health and/or the environment, how can the risk be managed?

• Identify Inputs to the Decision

The input into the decision process is as follows:

- Site and historical observations as detailed in sections 3.0 to 7.0 of this report;
- Soil laboratory analytical data collected, field observations and measurements made during field work;
- A NATA accredited laboratory to test the potential contaminates of concern identified in section 6.0 of this report;
- Photo-Ionised Detector (PID) for recovered soil samples;
- > AG compared the results obtained from material sampled to:
 - NEPM 2013, HIL Table 1A, Column B (HIL's);
 - Environmental Investigation Levels (EIL's);
 - Ecological Screening Levels (ESLs);
 - Health Screening Levels (HSL's); and
 - For asbestos, the assessed soil must not contain bonded asbestos containing material (ACM) in excess of 0.01% w/w and surface soils within the site is free of visible ACM.

• Define the Study Boundaries

Site investigation was limited to the site boundaries Lot 1 (No 8) in Deposited Plan 860799 with samples collected to a maximum depth of 1000mm below existing surface level, terminated within the natural soil horizon.

• Develop a Decision Rule

- If levels of contamination exceed the relevant assessment criteria and pose a risk to human health and/or the environment, a remedial action plan and validation assessment will be required;
- The acceptable limits for the QA/QC samples collected during the investigation are presented in Appendix B;
- Acceptable QA/QC data is presented in Appendix C;
- To conclude the decision, the assessment decision rules must be met. The results of sampling and analysis of soil must meet the following criteria:
 - The calculated 95% Upper Confidence Level value (95% UCL) for COPCs do not exist in soil samples at concentrations in excess Assessment Criteria;
 - The standard deviation of the results should be less than 50% of the relevant investigation or screening level; and
 - No single analytical result for a COPC should exceed 250% of the relevant investigation level or screening level.

• Specify Limits on Decision Errors

This step involves specifying the decision-maker's acceptable limits on decision errors.

- The acceptable limits on decision error to be applied in the investigation have been developed based on Data Quality Indicators of precision, accuracy, representativeness, comparability and completeness;
- The tolerable limits on decision errors are the probability that 95% of data will satisfy the DQI's, therefore a limit on the decision error will be 5% that a conclusive statement may be incorrect; and
- The potential for significant decision errors can be minimised by completing a robust Quality Analysis and Quality Control (QA/QC) program and by designing a sampling programme that includes appropriate sampling and analytical density for the purposes of the investigation.

• Optimize the Design for Obtaining Data

Samples are to be collected within the proposed development area to assess potential contamination.

8.3 Sampling Methodology

Each sample location was excavated utilising a 4WD mounted, 100mm, solid flight drilling rig to a depth of up to 1000mm. Samples was collected directly from the auger using disposable nitrile gloves by Nathan Smith (Principal). At each sampling depth, two (2) samples were recovered, one half for laboratory analysis and the other half ulilised for head space screening using a calibrated PID, for the presence of VOC. The PID readings are presented in Appendix B within the borehole logs.

Auger excavations were terminated at between 0.5m and 1.0m below existing surface level. Auger excavations generally revealed the following subsurface conditions;

The samples were placed in 250g laboratory prepared glass jars which were capped using teflon-sealed screw caps with samples for asbestos analysis placed in separate asbestos bags following field screening. The samples were then placed in a chilled ice box to maintain samples at a temperature below approximately 4°C which were then transported to SGS Pty Ltd (NATA accredited laboratory) under stringent chain of custody (COC) procedures.

A rinsate water sample was collected and placed in a glass bottle, plastic bottle and vials supplied by the laboratory at the end of field work. The fully filled bottles and vials were labelled and also placed in the chilled ice box. The samples were forwarded to SGS environmental for analysis along with a Chain of Custody which was subsequently returned to confirm the receipt of all samples.

9.0 FIELD QUALITY ASSURANCE AND QUALITY CONTROL

The field sampling was undertaken by AG. An Environmental Consultant from AG sampled from the test locations and supervised excavation of each borehole.

9.1 **Decontamination Procedures**

Soil samples were collected using a 4WD mounted, 100mm, solid flight drilling rig. The equipment was decontaminated between sampling events using the following procedure:

- 1) Soil was removed from the auger by scrubbing with a brush;
- 2) The auger was washed with phosphate free detergent in a bucket;
- 3) The auger was then rinsed in distilled water in another bucket;
- 4) Steps 2 and 3 were repeated; and
- 5) The auger was then dried with a clean disposable towel

A sample was then obtained from the final rinsate water composite to be analysed for Petroleum Hydrocarbons (analysed as TRH), Benzene, Toluene, Ethyl Benzene and Xylenes (BTEX), Polycyclic Aromatic Hydrocarbons (PAHs), Arsenic, Cadmium, Copper, Lead, Mercury and Zinc (common metals). The results are presented as an attachment in Appendix B. All results were below the LOR therefore, it is concluded that cross-contamination artefacts associated with sampling equipment was not present.

9.2 Duplicate Sampling

A blind duplicate sample was prepared in the field in order to determine the accuracy of the analytical programs. One blind duplicate was required to meet the 5% duplicate sampling frequency in accordance with NEPM 2013 SchB3. The blind duplicate and split sample was analysed for a Petroleum Hydrocarbons (analysed as TRH), Benzene, Toluene, Ethyl Benzene and Xylenes (BTEX), Polycyclic Aromatic Hydrocarbons (PAHs), Arsenic, Cadmium, Copper, Lead, Mercury and Zinc (common metals).

Approximately twice the normal amount of soil was collected and placed in a decontaminated stainless steel bowl. The sample was split into 2 portions. One portion was placed in a 250g laboratory prepared glass jar, capped using Teflon-sealed screw cap and then labelled sample E5. The second portion was placed into a second identical jar, labelled SPLIT respectively. Samples were forwarded to SGS Sydney.

Table 5 – Field Split & Duplicates

Laboratory	QC Type	No. of samples	RPD %	QC Acceptance Criteria
SGS Sydney	Blind Duplicate samples	1	 0 – 100% RPD (When the average concentration is < 5 times the LOR/EQL) 0 – 75% RPD (When the average concentration is 5 to 10 times the LOR/EQL) 0 – 50% RPD (When the average concentration is > 10 times the LOR/EQL) 	Achieved

The comparisons between the split and corresponding original sample indicated generally acceptable RPD overall. Higher RPD were computed for some samples, mainly due to heterogeneity of the soil horizon. Based on the above, the variations are not considered critical and overall the duplicate sample comparisons indicate that the test results provided by the primary laboratory can be relied upon for this assessment. A Chain of Custody (COC) for samples sent to the primary and secondary laboratory is attached in Appendix B, showing the sampler, sampling time and date, receipt of samples at the laboratory, analyses to be performed and sample preservation method.

9.3 Trip Spike

Trip spikes are obtained from the laboratory on a regular basis. The Laboratory prepares VOC spikes comprising of sand spiked with known concentrations of BTEX. The purpose of the trip spike is to detect any loss of volatiles from the soil samples during field work, transportation, sample extraction or testing. Laboratory prepared trip spike should be included at a rate of one per batch. One trip spike (TS1) was forwarded to the primary laboratory for BTEX analysis with resulting concentrations compared with the concentrations of the known additions. Test results show a good recovery of the spike concentrations (ranging from 96% to 104%), therefore it is considered that any loss of volatiles from the recovered samples that might have occurred would not affect the outcome or conclusion of this report. Laboratory test certificates are presented in Appendix B.

10.0 LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL

10.1 Laboratory Accreditation

SGS Australia Pty Ltd is accredited by the National Association of Testing Authorities (NATA) for the analysis carried out and are also accredited for compliance with ISO/IEC 17025.

10.2 Sample Holding Times

The holding times for samples at SGS are presented in table 6 below, along with the allowable holding time, detailed in Schedule B (3) of the National Environment Protection (Assessment of Site Contamination) Measure (NEPM, 2013):

Table 6 – Holding Times

Laboratory	Analyte	Date Sampled	Date Received	Date of Extraction/	Holding Time	Allowable Holding
	Metals			Analysis		Time 6 months*
	Organochloride Pesticides (OCP)					14 days
SGS	Organophosphorus Pesticides (OPP)	05-04-19	05-04-19	09-04-19 & 12-04-19	5-7 days	14 days
	Total Petroleum Hydrocarbons (TPH), PAH,					14 days
	BTEX, Cyanide, Phenols & PCB					

Note 1: (*) Metals excludes Mercury which has a holding time of 28 days.

Note 2: The soil sample analyses were conducted within the relevant allowable holding time.

10.3 Analytical Methods Used and Practical Quantitation Limits

The analytical methods and practical quantitation limits (PQL)/level of reporting (LOR) used by SGS are indicated on the test certificates located in Appendix B.

10.4 Laboratory Quality Control

SGS carry out in-house Quality Control testing. This provides the laboratory information regarding the accuracy of testing carried out. The RPD (relative percent difference) results for SGS are within the acceptance criteria adopted by the laboratory (see QC attached in Appendix B). If RPDs are in excess of 30%, the higher concentration is adopted as a conservative measure to identify any contamination present onsite. The results with the exception of 3 duplicates and 2 matrix spikes, met the criteria and are tabulated below in table 7:

Table 7 – RPDs

Laboratory	QC Type	QC Outliners Occur	QC Acceptance Criteria	
SGS	Laboratory Blanks	No	Achieved	
SGS	Laboratory Duplicates	No	Achieved	
SGS	Matrix Spikes	No	Achieved	
SGS	Surrogate Spikes	No	Achieved	

11.0 QUALITY ASSESSMENT AND QUALITY CONTROL DATA EVALUATION

Quality Assessment and Quality Control have been achieved through the following procedures.

11.1 Document Completeness

- Preparation of chain of custody records;
- Laboratory confirmation of receipt of intact samples and relevant chain of custody;
- Laboratory provision of NATA accredited results certificates.

11.2 Data Completeness

- Analysis of contaminants of concern;
- Duplicate and split samples within numbers recommended by NEPM.

11.3 Data Representativeness

This is achieved by the following:

- Representative sampling of potential contaminants based on the site history and site activities;
- Sufficient duplicate and split sample numbers complying with NEPM;
- Adequate laboratory internal QA and QC methods complying with NEPM.

11.4 Data Comparability

- Use of consistent sampling personnel and methodologies;
- Use of NATA accredited laboratories;
- Use of consistent test methods between selected laboratories;
- Use of consistent test methods between samples;
- Acceptable RPD between original samples and duplicate sample results.

11.5 Data Precision and Accuracy

- The use of NATA accredited laboratories a requirement of which is adequately trained and experienced staff;
- The use of appropriate and validated laboratory test methods;
- The analysis of duplicate and split samples;
- Acceptable RPD for duplicate and split samples overall;
- Acceptable laboratory performance based on results of blank, matrix spike, control, duplicate and surrogate samples.

11.6 Data Evaluation

Based on the above information regarding quality assurance and quality control, it is considered that the quality objectives for field procedures and laboratory results are reliable for this assessment.

Data Quality Objectives	Field Considerations	Laboratory Considerations	QC Acceptance Criteria
Completeness	Achieved	Achieved	Achieved
Comparability	Achieved	Achieved	Achieved
Representativeness	Achieved	Achieved	Achieved
Precision	Achieved	Achieved	Achieved
Accuracy	Achieved	Achieved	Achieved

Table 8 – Data Evaluation Summary

12.0 BASIS FOR ASSESSMENT CRITERIA

The Assessment criteria used in this investigation have been obtained from the following guideline documents to form the Site Assessment Criteria (SAC) for the site:

 The National Environment Protection (Assessment of Site Contamination) Measure (NEPM, 2013). This document presents risk-based Health Investigation Levels based on a variety of exposure settings for a number of organic and inorganic contaminants. To assess the risk to human health the results of the laboratory analysis are compared against the Health Investigation Levels ("HIL B") for the exposure setting; Residential with minimal opportunities for soil access which includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments

- Ecological Investigation Levels (EIL's) for metals are applicable for assessing the risk to terrestrial ecosystems. For arsenic and lead, generic EIL are adopted for urban residential land use for aged contamination. For other metals, where available, EIL are calculated using the EIL calculator developed by CSIRO for NEPC. For this assessment, the analytical results were assessed against the available SQG/EIL for urban residential land use for aged contamination.
- Health Screening Levels (HSL's) have been developed for selected petroleum compounds and fractions and are applicable to assessing human health risk via the inhalation and direct contact pathways. The HSL's depend on specific soil physicochemical properties, land use scenarios, and the characteristics of building structure.
- Ecological screening levels (ESL's) have been developed for selected petroleum hydrocarbon compounds and total petroleum hydrocarbon (TPH) fractions and are applicable for assessing risk to terrestrial ecosystems. ESL's broadly apply to coarse and fine grained soils and various land uses. They are generally applicable to the top 2m of soil. Urban Residential and Public Open Space guidelines were adopted from NEPM Schedule B1, table 1B (5).
- The site does not have history with manufacture of non-stick cookware; fabric, furniture and carpet stain protection applications; food packaging; industrial processes; or fire-fighting foam. Therefore, potential for per-and poly-fluoroalkyl substances (PFAS) was not considered necessary as part of this detailed site investigation.

Table 9 – Basis of Assessment

Contaminant	S of Assessment Site Assessment Criteria (SAC) mg/kg				
	Health Based Investigation Level (HIL'B')	Ecological Investigation Levels (EIL's)***	Health Screening Levels (HSL's)*	Ecological screening levels (ESL's)	
Inorganics					
(Heavy Metals)					
Arsenic (total)	500	20			
Cadmium	150	3			
Chromium (vI)	500	400			
Copper	30000	100			
Lead	1200	600			
Mercury	120	1			
Nickel	1200	60			
Zinc	60000	200			
Organics					
TPH					
C6 to C10			50	180	
>C10 to C16			130	120	
>C16 to C34				300	
>C34				2800	
Benzene			0.6	50	
Toulene			190	85	
Ethylbenzene			390	70	
BaP				0.7	
BaP (TEQ)	4				
Xylene			45	105	
Napthalene		170	3		
Phenol	45000				
PAH	400				
OCP	10				
Aldrin + Dieldrin	10				
Chlordane	90				
Heptachlor	10	1001			
DDD+DDE+DDT	600	180^			
OPP					
Diazinon Ethion	-				
Fenitrothion	-				
Penitrotnion PCB	- 1				
	45000				
Cyanide Asbestos	45000 0.01% bonded				
ASDESTOS	0.01% bonded ACM	-	-		
	ACIVI				

Notes: * Sandy texture 0m-0.5m has been adopted for assessing the upper fill soil horizon. *** Conservative and generic EIL adopted. ^DDT only

13.0 LABORATORY TEST RESULTS

Test results are tabulated and presented below (tables 10) along with the relevant assessment criteria. Laboratory test certificates are located in Appendix B.

Contaminant	Maximum Concentration mg/kg	Health Based Investigation Levels HIL 'B' mg/kg	Ecological Investigation Levels (EIL) mg/kg	Ecological and Health Screening Levels (ESL/HSL) mg/kg	Absolute Maximum Analyte Criteria ENM Order 2014 mg/kg	95% Upper Confidence Limit (UCL)
Arsenic	9	500	20	-	40	<sac< td=""></sac<>
Cadmium	0.8	150	3	-	1	<sac< td=""></sac<>
Chromium	34	500	400	-	150	<sac< td=""></sac<>
Lead	400	30000	600	-	100	<sac< td=""></sac<>
Mercury	0.49	1200	1	-	1	<sac< td=""></sac<>
Nickel	40	120	60	-	60	<sac< td=""></sac<>
Zinc	1100	1200	200	-	300	<sac< td=""></sac<>
Copper	100	60000	100	-	200	<sac< td=""></sac<>
Benzene	<0.1	4	-	0.6	0.5	<sac< td=""></sac<>
Toluene	<0.1	NA	-	85	65	<sac< td=""></sac<>
Ethyl Benzene	<0.1	NA	-	70	25	<sac< td=""></sac<>
Xylenes (total)	<0.3	NA	-		NA	<sac< td=""></sac<>
Benzo (a) Pyrene	1.6			0.7		<sac< td=""></sac<>
BaP (TEQ)	2.5	3	-	-	-	<sac< td=""></sac<>
Polynuclear Aromatic Hydrocarbons (PAH's)	17	300	-	-	40	<sac< td=""></sac<>
TPH C6-10	<25	-	-	50	NA	<sac< td=""></sac<>
TPH C10 to C16	<25	-	-	120	-	<sac< td=""></sac<>
TPH >C34	<120	-	-	2800	-	<sac< td=""></sac<>
TPH C16-34	450	-	-	300	500	<sac< td=""></sac<>
Phenol	0.6	3000	-	-	-	<sac< td=""></sac<>
Cyanide	<0.5	250				<sac< td=""></sac<>
Aldrin + Dieldrin	<0.2	7				<sac< td=""></sac<>
Chlordane	<0.1	50				<sac< td=""></sac<>
Heptachlor	<0.1	6				<sac< td=""></sac<>
DDD+DDE+DDT	<0.1	260	180			<sac< td=""></sac<>
Total PCBs	<1	1	-	-	-	<sac< td=""></sac<>
Asbestos	No	0.01%	-	-	-	-

Table 10 – Laboratory Test Results

13.1 Heavy Metals

Heavy metal concentrations for Arsenic, Cadmium, Copper, Zinc, Chromium, Lead, Mercury, and Nickel are presented in Table 10. The concentrations of all metals were below the relevant assessment criteria (HILs B, EIL). With the exception of samples numbered E2 and E6 which exceeded the EIL maximum concentration of 200mg/kg, for Zinc.

13.2 OCP, OPP, PCB, Cyanide and Phenols

The OCP and PCB concentrations, presented in Table 10, were less than the relevant assessment criteria adopted, and therefore the chemical analyses indicate that the site is not contaminated with OCP, OPP, PCB, Cyanide and Phenols.

13.3 Total Petroleum Hydrocarbons (TPH), Polycyclic Aromatic Hydrocarbons (PAH) and BTEX

The TPH, PAH and BTEX concentrations, presented in Table 10, were less than the relevant assessment criteria adopted, with the exception of the sample numbered E3 which exceeded the ESL maximum criteria on the TPH C¹⁰ to C¹⁶ fraction, achieving 450 mg/kg.

13.4 Asbestos Test Results

The Asbestos test results are presented in table 10. Asbestos was not detected in any fill samples provided to the laboratory for analysis.

14.0 DISCUSSION

The site is characterized as follows, as a result of the information obtained through this assessment:

- The site is proposed for construction of a mixed-use development comprising of residential and commercial spaces together with two (2) to (3) levels of basement car parking.
- Twelve (16) soil samples were recovered and sent to a NATA accredited laboratory for analysis. The concentrations of samples analyzed revealed levels generally below the relevant assessment criteria;

 Slightly elevated levels of heavy metal and TRH contamination above the EIL/ESL guidelines values may present a risk of phytotoxicity to plants and vegetation which could prevent growth. It is assumed that the location of samples numbered E2, E3 and E6 will be excavated as part of bulk excavation for basement carparking, therefore elevated levels of heavy metal and TRH are not considered relevant with regards to the proposed development. However, review of the final architectural drawings are required in order to confirm that the location of samples numbered E2, E3 and E6 are located outside areas of deep soil or vegetated zones post development.

15.0 VALIDATION

A systematic sampling methodology was chosen for this site, this was done to:

- Select statistically unbiased sampling locations
- Provide sampling locations at regular intervals, spaced evenly across the site.

The samples collected were compared against the Health Investigation Levels (HIL) for the exposure setting; 'HIL B'. The 95% upper confidence limit (UCL) average was also compared to the HIL guidelines.

16.0 CONCLUSION AND RECOMMENDATIONS

The results of the chemical analyses indicate that the site does not present a risk to human health and the environment. The site can be made suitable for the proposed construction of a mixed-use development comprising of residential and commercial spaces together with two (2) to (3) levels of basement car parking, subject to the following recommendations:

- Confirm that the location of samples numbered E2, E3 and E6 which presented slightly elevated heavy metal and TRH contamination above the EIL/ESL guideline values, are not located within deep soil or vegetated areas post development.
- Undertake a hazardous material assessment (HAZMAT) report to confirm the presence/absence of hazardous materials within site features. Hazardous material must be removed by a competent and fully licensed contractor with a clearance certificate undertaken from a licensed asbestos assessor; and
- Investigation has not been undertaken in the existing sheds and structures, beneath concrete slabs and other site feature footprints. It is recommended that validation of the soils beneath the dwellings, sheds and site features is undertaken, by an appropriately qualified environmental consultant, following demolition and removal of the concrete slab to assess the potential for impact.

This report was carried out in accordance with current NSW EPA guidelines, however, it is possible that further contaminated soils may be present between sampling locations.

Should you have any queries, please do not hesitate to contact the undersigned.

For and on behalf of Australian Geotechnical Pty Ltd

and

N.Smith Principal

References

- Contaminated Sites Guidelines for Consultants Reporting on Contaminated Sites. NSW Environment Protection Authority (EPA) 2000.
- Contaminated Sites Sampling Design Guidelines. NSW Environment Protection Authority (EPA) 1995
- National Environment Protection (Assessment of Site Contamination) Measure National Environmental Protection Council 2013.
- NEPC, 1999: National Environment Protection Council (1999). National Environment Protection (Assessment of Site Contamination) Measure. Schedule B(3)
- NEPC, 1999: National Environment Protection Council (1999). National Environment Protection (Assessment of Site Contamination) Measure. Schedule B(2) Guideline on Site Characterisation
- ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environmental and Conservation Council
- Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases (NSW EPA 2012)
- Guidelines for the Assessment and Management of Groundwater Contamination (NSW DEC 2007)
- Guidelines for Assessing Former Orchards and Market Garden (NSW EPA 2005)
- Designing Sampling Programs for Sites Potentially Contaminated by PFAS (EPA 2016)
- Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997 (NSW EPA 2015).

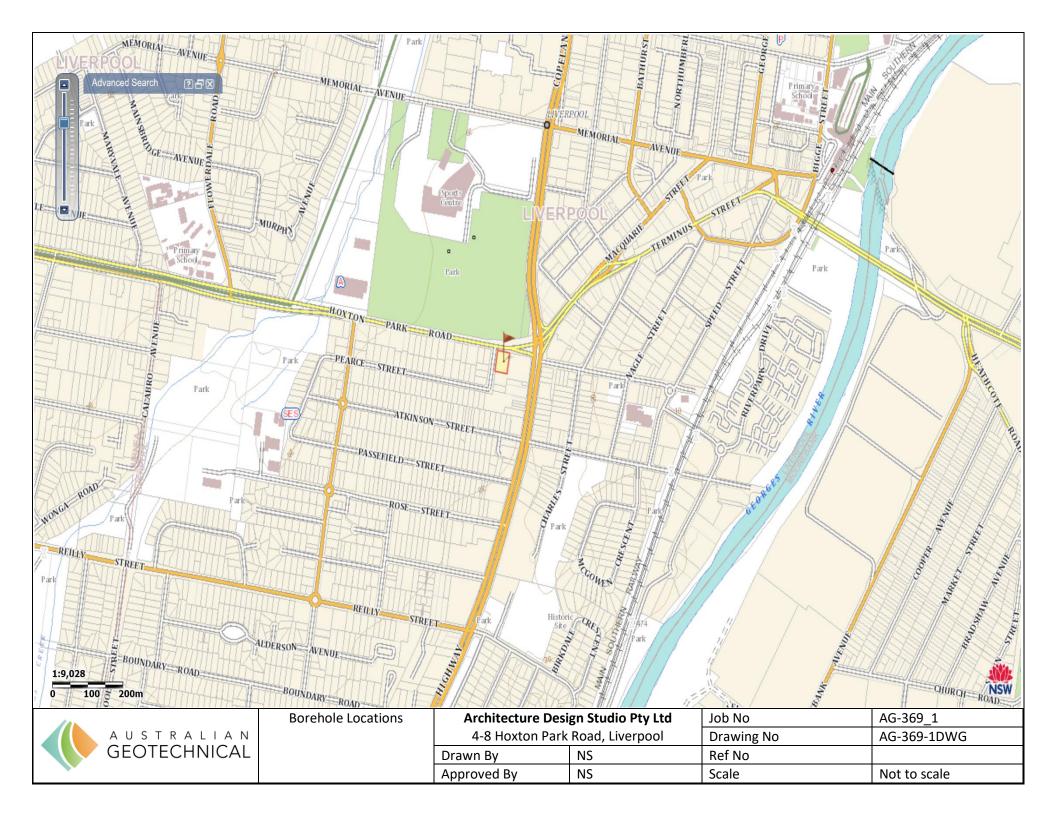
Limitations

This report has been prepared for use by the client who commissioned the works in accordance with the project brief and based on information provided by the client. The advice contained in this report relates only to the current project and all results, conclusions and recommendations should be reviewed by a competent person with experience in environmental investigations before being used for any other purpose. Australian Geotechnical Pty Ltd (AG) accepts no liability for use or interpretation by any person or body other than the client. This report must not be reproduced except in full and must not be amended in any way without prior approval by the client and AG.

The extent of sampling and analysis of soils has been undertaken targeting areas of environmental concern, targeting specific soil strata from where contamination is considered most likely to occur based on knowledge of site history and visual inspection. This approach has been adopted in order to maximise the probability of identifying contaminants, however the approach may not identify contamination that occurs in unexpected locations or from unexpected sources.

Furthermore, soil, rock and aquifer conditions are variable, resulting in the heterogeneous distribution of contaminants across the site. Contaminants have been identified at discrete locations; however conditions between sample locations have been inferred based on estimated geological and hydrogeological conditions, the nature and extent of identified contamination. Boundaries between zones of variable contamination are generally unclear and have been interpreted based on available data and professional judgement. The accuracy with which subsurface conditions have been characterised depends on the frequency of sampling, field and laboratory methods, the uniformity of the substrate and is therefore limited by the scope of works undertaken.

This report is based on targeted sampling and does not provide a complete assessment of the environmental status of the site and is limited to the scope defined therein. Should information become available regarding conditions at the site including previously unknown sources of contamination, AG reserves the right to review the report in the context of the additional information.



APPENDIX A

FIGURES

Bore Hole Location Plan and Borehole Logs

SITE LOCATION: 4-8 Hoxton Park Road, Liverpool, NSW						
WATER	DEPTH (m)	UNIFIED CLASSIFICATION	SOIL DESCRIPTION (SOIL TYPE, COLOUR, MOISTURE, CONSISTENCY)	Sample	PID (ppm)	REMARKS
			Borehole No 1			-
NIL	0.0m		Concrete	Fill		
	0.5m	SM	Silty Sand some fine to coarse Gravel dark grey Moist, low plasticity	E1	0.0	Fill
			End Bore 0.7m			
	1.0m					
			Borehole No 2			
NIL	0.0m		Asphaltic Concrete			
		СН	Silty Clay some fine to coarse Gravel moist, dark grey	E2	0.0	Fill
	0.5m					
		СН	Silty Clay some ironstone subangular Gravel inclusions, Brown, Moist, High Plasticity			Residual
	1.0m End Bore 1.0m		End Bore 1.0m			
			Borehole No 3			
NIL	0.0m		Concrete			Fill
		СН	Silty Clay some fine to coarse Gravel moist, dark grey	E3	0.5	
	0.5m					
	1.0m End Bore 1.0m					
I.OTT End Bore 1.0m Method: Trailer mounted, 100mm, solid flight auger drilling rig and hand equipment					inment	
Date Logg	Date : 5/04/2019 Logged By: NS and AS				princific	
Wea	ther/Time	2:	Fine/from 7am			

SITE LOCATION: 4-8 Hoxton Park Road, Liverpool, NSW								
WATER	DEPTH (m)	UNIFIED CLASSIFICATION	SOIL DESCRIPTION (SOIL TYPE, COLOUR, MOISTURE, CONSISTENCY)	Sample	PID (ppm)	REMARKS		
	Borehole No 4							
NIL	0.0m	SM	Silty Sand some fine to coarse Gravel dark grey Moist, low plasticity	E4	0.0	Fill		
	0.5m	СН	Silty Clay some ironstone subangular Gravel inclusions, Brown Red and grey Moist, High Plasticity End bore 0.8m	E5				
	1.0m							
			Borehole No 5	•				
NIL	0.0m	СН	Silty Clay some fine to coarse Gravel moist, dark grey	E6	0.1	Fill		
	0.5m		End bore 0.5m					
	1.0m							
			Borehole No 6					
NIL	0.0m		Concrete			Fill		
	0.5m	СН	Silty Clay some fine to coarse Gravel moist, dark grey	E7	0.0			
	1.0m	СН	Silty Clay some ironstone subangular Gravel inclusions, Brown Red and grey End Bore 1.0m	E8				
Method:Trailer mounted, 100mm, solid flight auger drilling rig and hand equipmentDate :5/04/2019Logged By:NS and ASWeather/Time:Fine/from 7am								

APPENDIX B

LABORATORY TEST CERTIFICATES

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Nathan Smith	Manager	Huong Crawford
Client	AUSTRALIAN GEOTECHNICAL PTY LTD	Laboratory	SGS Alexandria Environmental
Address	2 SHIRLEY STREET ROSEHILL NSW 2144	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	(Not specified)	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	nathan@austgeo.com.au	Email	au.environmental.sydney@sgs.com
Project	AG-369	SGS Reference	SE191305 R0
Order Number	AG-369_1	Date Received	5/4/2019
Samples	13	Date Reported	12/4/2019

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Ravee Sivasubramaniam.

SIGNATORIES

Akheeqar Beniameen Chemist

kinty

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

VOC's in Soil [AN433] Tested: 9/4/2019

			E1	E2	E3	E4	E5
				0.011	0.011	0.011	00"
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			4/4/2019	4/4/2019	4/4/2019	4/4/2019	4/4/2019
PARAMETER	UOM	LOR	SE191305.001	SE191305.002	SE191305.003	SE191305.004	SE191305.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			E6	E7	E8	E9	Split
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			4/4/2019	4/4/2019	4/4/2019	4/4/2019	4/4/2019
PARAMETER	UOM	LOR	SE191305.006	SE191305.007	SE191305.008	SE191305.009	SE191305.011
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			Trip Spike	Trip Blank
PARAMETER	UOM	LOR	SOIL - 4/4/2019 SE191305.012	SOIL - 4/4/2019 SE191305.013
Benzene	mg/kg	0.1	[96%]	<0.1
Toluene	mg/kg	0.1	[101%]	<0.1
Ethylbenzene	mg/kg	0.1	[102%]	<0.1
m/p-xylene	mg/kg	0.2	[104%]	<0.2
o-xylene	mg/kg	0.1	[103%]	<0.1
Total Xylenes	mg/kg	0.3	-	<0.3
Total BTEX	mg/kg	0.6	-	<0.6
Naphthalene	mg/kg	0.1	-	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 9/4/2019

			E1	E2	E3	E4	E5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			4/4/2019	4/4/2019	4/4/2019	4/4/2019	4/4/2019
PARAMETER	UOM	LOR	SE191305.001	SE191305.002	SE191305.003	SE191305.004	SE191305.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			E6	E7	E8	E9	Split
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 4/4/2019	- 4/4/2019	- 4/4/2019	- 4/4/2019	- 4/4/2019
PARAMETER	UOM	LOR	SE191305.006	SE191305.007	SE191305.008	SE191305.009	SE191305.011
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			Trip Blank
			SOIL
			4/4/2019
PARAMETER	UOM	LOR	SE191305.013
TRH C6-C9	mg/kg	20	<20
Benzene (F0)	mg/kg	0.1	<0.1
TRH C6-C10	mg/kg	25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 9/4/2019

			E1	E2	E3	E4	E5
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 4/4/2019	- 4/4/2019	- 4/4/2019	- 4/4/2019	- 4/4/2019
PARAMETER	UOM	LOR	4/4/2019 SE191305.001	4/4/2019 SE191305.002	4/4/2019 SE191305.003	SE191305.004	SE191305.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	360	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	170	58	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	450	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	530	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	450	<210	<210

			E6	E7	E8	E9	Split
PARAMETER	UOM	LOR	SOIL - 4/4/2019 SE191305.006	SOIL - 4/4/2019 SE191305.007	SOIL - 4/4/2019 SE191305.008	SOIL - 4/4/2019 SE191305.009	SOIL - 4/4/2019 SE191305.011
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	54	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	72	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	120	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	130	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 9/4/2019

			E1	E2	E3	E4	E5
			SOIL	SOIL	SOIL	SOIL	SOIL
						-	-
			4/4/2019	4/4/2019	4/4/2019	4/4/2019	4/4/2019
PARAMETER	UOM	LOR	SE191305.001	SE191305.002	SE191305.003	SE191305.004	SE191305.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	0.3	<0.1	1.9	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	0.6	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	0.5	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.2	<0.1	1.0	<0.1	<0.1
Pyrene	mg/kg	0.1	0.2	<0.1	1.8	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	0.1	<0.1	0.6	<0.1	<0.1
Chrysene	mg/kg	0.1	0.1	<0.1	0.9	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	<0.1	1.4	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.5	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	0.2	<0.1	1.6	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.3	<0.1	2.3	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	0.4	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.6	<0.1	3.2	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.3</td><td><0.2</td><td>2.5</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	0.3	<0.2	2.5	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.4</td><td><0.3</td><td>2.5</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	0.4	<0.3	2.5	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.3</td><td><0.2</td><td>2.5</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	0.3	<0.2	2.5	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	2.1	<0.8	17	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	2.1	<0.8	17	<0.8	<0.8

			E6	E7	E8	E9	Split
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			4/4/2019	4/4/2019	4/4/2019	4/4/2019	4/4/2019
PARAMETER	UOM	LOR	SE191305.006	SE191305.007	SE191305.008	SE191305.009	SE191305.011
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

ANALYTICAL RESULTS

SE191305 R0

OC Pesticides in Soil [AN420] Tested: 9/4/2019

			E1	E4	E9
			SOIL	SOIL	SOIL
					-
PARAMETER	UOM	LOR	4/4/2019 SE191305.001	4/4/2019 SE191305.004	4/4/2019 SE191305.009
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1
	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1

OP Pesticides in Soil [AN420] Tested: 9/4/2019

	E1		E1	E4	E9
			SOIL	SOIL	SOIL
			4/4/2019	4/4/2019	4/4/2019
PARAMETER	UOM	LOR	SE191305.001	SE191305.004	SE191305.009
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7

PCBs in Soil [AN420] Tested: 9/4/2019

			E1	E4	E9
			SOIL	SOIL	SOIL
					-
			4/4/2019	4/4/2019	4/4/2019
PARAMETER	UOM	LOR	SE191305.001	SE191305.004	SE191305.009
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1

Total Phenolics in Soil [AN289] Tested: 11/4/2019

			E1	E5	E9
			SOIL	SOIL	SOIL
			4/4/2019	4/4/2019	4/4/2019
PARAMETER	UOM	LOR	SE191305.001	SE191305.005	SE191305.009
Total Phenols	mg/kg	0.1	0.1	0.4	0.6

Total Cyanide in soil by Discrete Analyser (Aquakem) [AN077/AN287] Tested: 12/4/2019

			E1
			SOIL
			-
PARAMETER	UOM	LOR	4/4/2019 SE191305.001
Total Cyanide	mg/kg	0.5	<0.5

ANALYTICAL RESULTS

SE191305 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 9/4/2019

			E1	E2	E3	E4	E5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			4/4/2019	4/4/2019	4/4/2019	4/4/2019	4/4/2019
PARAMETER	UOM	LOR	SE191305.001	SE191305.002	SE191305.003	SE191305.004	SE191305.005
Arsenic, As	mg/kg	1	2	4	2	3	4
Cadmium, Cd	mg/kg	0.3	<0.3	0.8	0.4	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	8.3	34	11	5.5	3.7
Copper, Cu	mg/kg	0.5	43	100	82	61	7.8
Lead, Pb	mg/kg	1	14	69	82	5	9
Nickel, Ni	mg/kg	0.5	23	37	26	40	0.8
Zinc, Zn	mg/kg	2	130	1100	180	30	7.6

			E6	E7	E8	E9	Split
			SOIL	SOIL	SOIL	SOIL	SOIL
			4/4/2019	4/4/2019	4/4/2019	4/4/2019	4/4/2019
PARAMETER	UOM	LOR	SE191305.006	SE191305.007	SE191305.008	SE191305.009	SE191305.011
Arsenic, As	mg/kg	1	7	9	4	6	5
Cadmium, Cd	mg/kg	0.3	0.4	0.3	0.6	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	14	15	4.7	14	2.8
Copper, Cu	mg/kg	0.5	40	46	17	33	7.8
Lead, Pb	mg/kg	1	300	400	8	240	6
Nickel, Ni	mg/kg	0.5	5.9	12	1.2	13	<0.5
Zinc, Zn	mg/kg	2	210	170	11	140	6.6

Mercury in Soil [AN312] Tested: 9/4/2019

			E1	E2	E3	E4	E5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			4/4/2019	4/4/2019	4/4/2019	4/4/2019	4/4/2019
PARAMETER	UOM	LOR	SE191305.001	SE191305.002	SE191305.003	SE191305.004	SE191305.005
Mercury	mg/kg	0.05	<0.05	0.05	<0.05	<0.05	<0.05

			E6	E7	E8	E9	Split
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			4/4/2019	4/4/2019	4/4/2019	4/4/2019	4/4/2019
PARAMETER	UOM	LOR	SE191305.006	SE191305.007	SE191305.008	SE191305.009	SE191305.011
Mercury	mg/kg	0.05	0.21	0.49	<0.05	0.29	<0.05

Moisture Content [AN002] Tested: 9/4/2019

			E1	E2	E3	E4	E5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			4/4/2019	4/4/2019	4/4/2019	4/4/2019	4/4/2019
PARAMETER	UOM	LOR	SE191305.001	SE191305.002	SE191305.003	SE191305.004	SE191305.005
% Moisture	%w/w	0.5	4.0	8.5	7.8	7.5	15

			E6	E7	E8	E9	Split
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			4/4/2019	4/4/2019	4/4/2019	4/4/2019	4/4/2019
PARAMETER	UOM	LOR	SE191305.006	SE191305.007	SE191305.008	SE191305.009	SE191305.011
% Moisture	%w/w	0.5	18	21	21	8.3	16

			Trip Blank
			SOIL
			-
			4/4/2019
PARAMETER	UOM	LOR	SE191305.013
% Moisture	%w/w	0.5	<0.5

Fibre Identification in soil [AN602] Tested: 11/4/2019

			E1	E2	E3	E4	E6
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			4/4/2019	4/4/2019	4/4/2019	4/4/2019	4/4/2019
PARAMETER	UOM	LOR	SE191305.001	SE191305.002	SE191305.003	SE191305.004	SE191305.006
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			E7	E9
			SOIL	SOIL
			4/4/2019	4/4/2019
PARAMETER	UOM	LOR	SE191305.007	SE191305.009
Asbestos Detected	No unit	-	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01

VOCs in Water [AN433] Tested: 10/4/2019

			Rin -1
			WATER
			4/4/2019
PARAMETER	UOM	LOR	SE191305.010
Benzene	µg/L	0.5	<0.5
Toluene	μg/L	0.5	<0.5
Ethylbenzene	μg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	μg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene	µg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 10/4/2019

			Rin -1
			WATER
			- 4/4/2019
PARAMETER	UOM	LOR	SE191305.010
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

ANALYTICAL RESULTS

SE191305 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 8/4/2019

			Rin -1
			WATER - 4/4/2019
PARAMETER	UOM	LOR	SE191305.010
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C36	µg/L	450	<450
TRH C10-C40	µg/L	650	<650
TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60

ANALYTICAL RESULTS

SE191305 R0

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 8/4/2019

			Rin -1 WATER - 4/4/2019
PARAMETER	UOM	LOR	SE191305.010
Naphthalene	µg/L	0.1	<0.1
2-methylnaphthalene	µg/L	0.1	<0.1
1-methylnaphthalene	µg/L	0.1	<0.1
Acenaphthylene	µg/L	0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1
Fluorene	µg/L	0.1	<0.1
Phenanthrene	µg/L	0.1	<0.1
Anthracene	µg/L	0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1
Pyrene	µg/L	0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1
Chrysene	µg/L	0.1	<0.1
Benzo(b&j)fluoranthene	μg/L	0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1
Benzo(a)pyrene	μg/L	0.1	<0.1
Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
Dibenzo(ah)anthracene	μg/L	0.1	<0.1
Benzo(ghi)perylene	μg/L	0.1	<0.1
Total PAH (18)	μg/L	1	<1

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 10/4/2019

			Rin -1
			WATER
			- 4/4/2019
PARAMETER	UOM	LOR	SE191305.010
Arsenic, As	μg/L	1	<1
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Copper, Cu	µg/L	1	<1
Lead, Pb	µg/L	1	<1
Nickel, Ni	µg/L	1	<1
Zinc, Zn	µg/L	5	<5

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 10/4/2019

			Rin -1
			WATER
			-
			4/4/2019
PARAMETER	UOM	LOR	SE191305.010
Mercury	mg/L	0.0001	<0.0001

METHOD _ ____METHODOLOGY SUMMARY __ The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating AN002 basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water. AN020 Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B. AN040/AN320 A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C. AN040 A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8. AN077 Hydrogen cyanide is liberated from an acidified alkali soil extract by distillation and purging with air. The hydrogen cyanide gas is then collected by passing it through a sodium hydroxide scrubbing solution. The scrubbing solution will then be analysed for cyanide by the appropriate method. AN287 A buffered distillate or water sample is treated with chloramine/barbituric acid reagents and the intensity of the colour developed is proportional to the cvanide concentration by Aguakem DA. **AN289** Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D. AN311(Perth)/AN312 Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500. AN312 Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury mercury ions are vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards Reference APHA 3112/3500 Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A. AN318 AN403 Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available. Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of AN403 the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents . AN403 The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B. AN420 (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D). AN420 SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D). AN433 VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260. AN602 Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.

AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as
	unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis
	Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has
	been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602
	section 4.5 of this method has been followed, and if-
	(a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):
	(b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in
	asbestos-containing materials are found to be less than 0.1g/kg: and
	(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under
	stereo-microscope viewing conditions.
	stereo-microscope viewing conditions.

FOOTNOTES

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au.pv.sgsvr/en-gb/environment</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Nathan Smith	Manager	Huong Crawford
Client	AUSTRALIAN GEOTECHNICAL PTY LTD	Laboratory	SGS Alexandria Environmental
Address	2 SHIRLEY STREET ROSEHILL NSW 2144	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	(Not specified)	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	nathan@austgeo.com.au	Email	au.environmental.sydney@sgs.com
Project	AG-369	SGS Reference	SE191305 R0
Order Number	AG-369_1	Date Received	05 Apr 2019
Samples	7	Date Reported	12 Apr 2019
l			

- COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Ravee Sivasubramaniam.

SIGNATORIES

Akheeqar Beniameen Chemist

kinty

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

4 0400 www.sgs.com.au 4 0499

Member of the SGS Group

ANALYTICAL REPORT

Fibre Identificat	ion in soil				Method AN	602
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*
SE191305.001	E1	Soil	257g Clay,Soil,Rocks	04 Apr 2019	No Asbestos Found	<0.01
SE191305.002	E2	Soil	309g Clay,Soil,Rocks	04 Apr 2019	No Asbestos Found	<0.01
SE191305.003	E3	Soil	261g Clay,Soil,Rocks	04 Apr 2019	No Asbestos Found	<0.01
SE191305.004	E4	Soil	274g Clay,Soil,Rocks	04 Apr 2019	No Asbestos Found	<0.01
SE191305.006	E6	Soil	281g Clay,Soil,Rocks	04 Apr 2019	No Asbestos Found	<0.01
SE191305.007	E7	Soil	161g Clay,Soil,Rocks	04 Apr 2019	No Asbestos Found	<0.01
SE191305.009	E9	Soil	164g Clay,Soil,Rocks	04 Apr 2019	No Asbestos Found	<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -Amosite Brown Asbestos NA Not Analysed White Asbestos Chrysotile INR --Listed. Not Required Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been perfored by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au.pv.sgsvr/en-gb/environment</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

	LABORATORY DETAI	LS
Nathan Smith	Manager	Huong Crawford
AUSTRALIAN GEOTECHNICAL PTY LTD	Laboratory	SGS Alexandria Environmental
2 SHIRLEY STREET ROSEHILL NSW 2144	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
(Not specified)	Telephone	+61 2 8594 0400
(Not specified)	Facsimile	+61 2 8594 0499
nathan@austgeo.com.au	Email	au.environmental.sydney@sgs.com
AG-369	SGS Reference	SE191305 R0
AG-369_1	Date Received	05 Apr 2019
13	Date Reported	12 Apr 2019
	Nathan Smith AUSTRALIAN GEOTECHNICAL PTY LTD 2 SHIRLEY STREET ROSEHILL NSW 2144 (Not specified) (Not specified) nathan@austgeo.com.au AG-369 AG-369_1	Nathan SmithManagerAUSTRALIAN GEOTECHNICAL PTY LTDLaboratory2 SHIRLEY STREETAddressROSEHILL NSW 2144Telephone(Not specified)Telephone(Not specified)Facsimilenathan@austgeo.com.auEmailAG-369SGS ReferenceAG-369_1Date Received

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	3 items
Matrix Spike	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	2 items

Samples clearly labelled	Yes	Complete documentation received	Yes
Sample container provider	SGS	Sample cooling method	Ice Bricks
Samples received in correct containers	Yes	Sample counts by matrix	12 Soil, 1 Water
Date documentation received	5/4/2019	Type of documentation received	COC
Number of eskies/boxes received		Samples received in good order	Yes
Samples received without headspace	Yes	Sample temperature upon receipt	13.8°C
Sufficient sample for analysis	Yes	Turnaround time requested	Standard

Unit 16 33 Maddox St

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

Australia

Australia

12/4/2019

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil Method: ME-(AU)-[ENV]AN602 Sample Name Analysis Due Analysed Sample No. QC Ref Sampled Received Extraction Due Extracted E1 SE191305.001 LB171275 04 Apr 2019 05 Apr 2019 03 Apr 2020 11 Apr 2019 03 Apr 2020 12 Apr 2019 E2 LB171275 03 Apr 2020 12 Apr 2019 SE191305.002 04 Apr 2019 05 Apr 2019 11 Apr 2019 03 Apr 2020 E3 SE191305.003 LB171275 04 Apr 2019 05 Apr 2019 03 Apr 2020 11 Apr 2019 03 Apr 2020 12 Apr 2019 04 Apr 2019 03 Apr 2020 11 Apr 2019 E4 SE191305.004 LB171275 05 Apr 2019 03 Apr 2020 12 Apr 2019 E6 SE191305.006 LB171275 05 Apr 2019 11 Apr 2019 03 Apr 2020 12 Apr 2019 04 Apr 2019 03 Apr 2020 E7 SE191305.007 LB171275 04 Apr 2019 05 Apr 2019 03 Apr 2020 11 Apr 2019 03 Apr 2020 12 Apr 2019 E9 SE191305.009 LB171275 04 Apr 2019 05 Apr 2019 03 Apr 2020 11 Apr 2019 03 Apr 2020 12 Apr 2019 Method: ME-(AU)-[ENV]AN311(Perth)/AN312 Mercury (dissolved) in Water

Rin -1 SE191305.010 LB171109 04 Apr 2019 05 Apr 2019 02 May 2019 10 Apr 2019 02 May 2019 11 Apr 2019	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
	Rin -1	SE191305.010	LB171109	04 Apr 2019	05 Apr 2019	02 May 2019	10 Apr 2019	02 May 2019	11 Apr 2019

Mercury in Soi

Method: ME-(A	U)-[ENV]AN312
---------------	---------------

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
E1	SE191305.001	LB171091	04 Apr 2019	05 Apr 2019	02 May 2019	09 Apr 2019	02 May 2019	12 Apr 2019
E2	SE191305.002	LB171091	04 Apr 2019	05 Apr 2019	02 May 2019	09 Apr 2019	02 May 2019	12 Apr 2019
E3	SE191305.003	LB171091	04 Apr 2019	05 Apr 2019	02 May 2019	09 Apr 2019	02 May 2019	12 Apr 2019
E4	SE191305.004	LB171091	04 Apr 2019	05 Apr 2019	02 May 2019	09 Apr 2019	02 May 2019	12 Apr 2019
E5	SE191305.005	LB171091	04 Apr 2019	05 Apr 2019	02 May 2019	09 Apr 2019	02 May 2019	12 Apr 2019
E6	SE191305.006	LB171091	04 Apr 2019	05 Apr 2019	02 May 2019	09 Apr 2019	02 May 2019	12 Apr 2019
E7	SE191305.007	LB171091	04 Apr 2019	05 Apr 2019	02 May 2019	09 Apr 2019	02 May 2019	12 Apr 2019
E8	SE191305.008	LB171091	04 Apr 2019	05 Apr 2019	02 May 2019	09 Apr 2019	02 May 2019	12 Apr 2019
E9	SE191305.009	LB171091	04 Apr 2019	05 Apr 2019	02 May 2019	09 Apr 2019	02 May 2019	12 Apr 2019
Split	SE191305.011	LB171091	04 Apr 2019	05 Apr 2019	02 May 2019	09 Apr 2019	02 May 2019	12 Apr 2019

Moisture Content							Method: I	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
E1	SE191305.001	LB171089	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	14 Apr 2019	12 Apr 2019
E2	SE191305.002	LB171089	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	14 Apr 2019	12 Apr 2019
E3	SE191305.003	LB171089	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	14 Apr 2019	12 Apr 2019
E4	SE191305.004	LB171089	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	14 Apr 2019	12 Apr 2019
E5	SE191305.005	LB171089	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	14 Apr 2019	12 Apr 2019
E6	SE191305.006	LB171089	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	14 Apr 2019	12 Apr 2019
E7	SE191305.007	LB171089	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	14 Apr 2019	12 Apr 2019
E8	SE191305.008	LB171089	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	14 Apr 2019	12 Apr 2019
E9	SE191305.009	LB171089	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	14 Apr 2019	12 Apr 2019
Split	SE191305.011	LB171089	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	14 Apr 2019	12 Apr 2019
Trip Blank	SE191305.013	LB171089	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	14 Apr 2019	12 Apr 2019

OC Pesticides in Soil							Method: I	VIE-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
E1	SE191305.001	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E2	SE191305.002	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E3	SE191305.003	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E4	SE191305.004	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E5	SE191305.005	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E6	SE191305.006	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E7	SE191305.007	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E8	SE191305.008	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E9	SE191305.009	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
Split	SE191305.011	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019

OP Poeticidae in Soil

OF Festicides III 301							Mediod. I	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
E1	SE191305.001	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E2	SE191305.002	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E3	SE191305.003	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E4	SE191305.004	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E5	SE191305.005	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E6	SE191305.006	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E7	SE191305.007	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019

Method: ME_(ALI)_IENI/JAN//20

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OP Pesticides in Soil (continued) Method: ME-(AU)-[ENV]								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
E8	SE191305.008	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E9	SE191305.009	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
Split	SE191305.011	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
PAH (Polynuclear Aromati	ic Hydrocarbons) in Soil						Method: M	/IE-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
E1	SE191305.001	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E2	SE191305.002	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E3	SE191305.003	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E4	SE191305.004	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E5	SE191305.005	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E6	SE191305.006	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E7	SE191305.007	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E8	SE191305.008	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E9	SE191305.009	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
Split	SE191305.011	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
PAH (Polynuclear Aromati	ic Hydrocarbons) in Water						Method: M	/E-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rin -1	SE191305.010	LB170986	04 Apr 2019	05 Apr 2019	11 Apr 2019	08 Apr 2019	18 May 2019	12 Apr 2019

PCBs in Soil Metho								ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
E1	SE191305.001	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E2	SE191305.002	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E3	SE191305.003	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E4	SE191305.004	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E5	SE191305.005	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E6	SE191305.006	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E7	SE191305.007	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E8	SE191305.008	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
E9	SE191305.009	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
Split	SE191305.011	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
Total Cyanide in soil by Discrete Analyser (Aquakem) Method: ME-(AU)-[ENV]AN077/AN287								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
E1	SE191305.001	LB171340	04 Apr 2019	05 Apr 2019	18 Apr 2019	12 Apr 2019	18 Apr 2019	12 Apr 2019

Total Phenolics in Soil							Method: N	IE-(AU)-[ENV]AN289	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
E1	SE191305.001	LB171234	04 Apr 2019	05 Apr 2019	18 Apr 2019	11 Apr 2019	18 Apr 2019	12 Apr 2019	
E5	SE191305.005	LB171234	04 Apr 2019	05 Apr 2019	18 Apr 2019	11 Apr 2019	18 Apr 2019	12 Apr 2019	
E9	SE191305.009	LB171234	04 Apr 2019	05 Apr 2019	18 Apr 2019	11 Apr 2019	18 Apr 2019	12 Apr 2019	
Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
E1	SE191305.001	LB171090	04 Apr 2019	05 Apr 2019	01 Oct 2019	09 Apr 2019	01 Oct 2019	12 Apr 2019	
E2	SE191305.002	LB171090	04 Apr 2019	05 Apr 2019	01 Oct 2019	09 Apr 2019	01 Oct 2019	12 Apr 2019	
E3	SE191305.003	LB171090	04 Apr 2019	05 Apr 2019	01 Oct 2019	09 Apr 2019	01 Oct 2019	12 Apr 2019	
E4	SE191305.004	LB171090	04 Apr 2019	05 Apr 2019	01 Oct 2019	09 Apr 2019	01 Oct 2019	12 Apr 2019	
E5	SE191305.005	LB171090	04 Apr 2019	05 Apr 2019	01 Oct 2019	09 Apr 2019	01 Oct 2019	12 Apr 2019	
E6	SE191305.006	LB171090	04 Apr 2019	05 Apr 2019	01 Oct 2019	09 Apr 2019	01 Oct 2019	12 Apr 2019	
E7	SE191305.007	LB171090	04 Apr 2019	05 Apr 2019	01 Oct 2019	09 Apr 2019	01 Oct 2019	12 Apr 2019	
E8	SE191305.008	LB171090	04 Apr 2019	05 Apr 2019	01 Oct 2019	09 Apr 2019	01 Oct 2019	12 Apr 2019	
E9	SE191305.009	LB171090	04 Apr 2019	05 Apr 2019	01 Oct 2019	09 Apr 2019	01 Oct 2019	12 Apr 2019	
Split	SE191305.011	LB171090	04 Apr 2019	05 Apr 2019	01 Oct 2019	09 Apr 2019	01 Oct 2019	12 Apr 2019	
Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
Rin -1	SE191305.010	LB171101	04 Apr 2019	05 Apr 2019	01 Oct 2019	10 Apr 2019	01 Oct 2019	10 Apr 2019	

Method: ME-(AU)-[ENV]AN433

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

TRH (Total Recoverable Hydrocarbons) in Soil

TRH (Total Recoverable I	RH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
E1	SE191305.001	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019		
E2	SE191305.002	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019		
E3	SE191305.003	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019		
E4	SE191305.004	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019		
E5	SE191305.005	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019		
E6	SE191305.006	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019		
E7	SE191305.007	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019		
E8	SE191305.008	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019		
E9	SE191305.009	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019		
Split	SE191305.011	LB171088	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019		
TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[EN						ME-(AU)-[ENV]AN403				
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
Rin -1	SE191305.010	LB170986	04 Apr 2019	05 Apr 2019	11 Apr 2019	08 Apr 2019	18 May 2019	12 Apr 2019		

VOC's in Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
E1	SE191305.001	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E2	SE191305.002	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E3	SE191305.003	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E4	SE191305.004	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E5	SE191305.005	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E6	SE191305.006	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E7	SE191305.007	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E8	SE191305.008	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E9	SE191305.009	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
Split	SE191305.011	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
Trip Spike	SE191305.012	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
Trip Blank	SE191305.013	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
VOCs in Water							Method:	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rin -1	SE191305.010	LB171142	04 Apr 2019	05 Apr 2019	11 Apr 2019	10 Apr 2019	20 May 2019	11 Apr 2019

Volatile F

SE191305.010

LB171142

04 Apr 2019

Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN4								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
E1	SE191305.001	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E2	SE191305.002	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E3	SE191305.003	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E4	SE191305.004	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E5	SE191305.005	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E6	SE191305.006	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E7	SE191305.007	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E8	SE191305.008	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
E9	SE191305.009	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
Split	SE191305.011	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
Trip Spike	SE191305.012	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	12 Apr 2019
Trip Blank	SE191305.013	LB171087	04 Apr 2019	05 Apr 2019	18 Apr 2019	09 Apr 2019	19 May 2019	11 Apr 2019
Volatile Petroleum Hydrod	carbons in Water						Method: M	/IE-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

05 Apr 2019

11 Apr 2019

10 Apr 2019

20 May 2019

11 Apr 2019

Rin -1

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

DC Pesticides in Soil				Method: M	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	E1	SE191305.001	%	60 - 130%	108
	E4	SE191305.004	%	60 - 130%	117
	E9	SE191305.009	%	60 - 130%	99
P Pesticides in Soll				Method: M	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	E1	SE191305.001	%	60 - 130%	92
	E4	SE191305.004	%	60 - 130%	90
	E9	SE191305.009	%	60 - 130%	86
d14-p-terphenyl (Surrogate)	<u>E1</u>	SE191305.001	%	60 - 130%	90
	E4	SE191305.004	%	60 - 130%	86
	E9	SE191305.009	%	60 - 130%	92
AH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: MI	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	<u>E1</u>	SE191305.001	%	70 - 130%	92
	E2	SE191305.002	%	70 - 130%	92
	E3	SE191305.003	%	70 - 130%	96
	E4	SE191305.004	%	70 - 130%	90
	E5	SE191305.005	%	70 - 130%	78
	E6	SE191305.006	%	70 - 130%	78
	E7	SE191305.007	%	70 - 130%	94
	E8	SE191305.008	%	70 - 130%	86
	E9	SE191305.009	%	70 - 130%	86
	Split	SE191305.011	%	70 - 130%	80
d14-p-terphenyl (Surrogate)	E1	SE191305.001	%	70 - 130%	90
	E2	SE191305.002	%	70 - 130%	90
	E3	SE191305.003	%	70 - 130%	88
	E4	SE191305.004	%	70 - 130%	86
	E5	SE191305.005	%	70 - 130%	88
	E6	SE191305.006	%	70 - 130%	86
	E7	SE191305.007	%	70 - 130%	96
	E8	SE191305.008	%	70 - 130%	84
	E9	SE191305.009	%	70 - 130%	92
	Split	SE191305.011	%	70 - 130%	92
d5-nitrobenzene (Surrogate)	E1	SE191305.001	%	70 - 130%	84
	E2	SE191305.002	%	70 - 130%	80
	E3	SE191305.003	%	70 - 130%	82
	E4	SE191305.004	%	70 - 130%	88
	E5	SE191305.005	%	70 - 130%	78
	E6	SE191305.006	%	70 - 130%	82
	E7	SE191305.007	%	70 - 130%	94
	E8	SE191305.008	%	70 - 130%	78
	E9	SE191305.009	%	70 - 130%	90
	Split	SE191305.011	%	70 - 130%	86
AH (Polynuclear Aromatic Hydrocarbons) in Water				Method: M	E-(AU)-[ENV]AN

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	Rin -1	SE191305.010	%	40 - 130%	60
d14-p-terphenyl (Surrogate)	Rin -1	SE191305.010	%	40 - 130%	76
d5-nitrobenzene (Surrogate)	Rin -1	SE191305.010	%	40 - 130%	54

PCBs in Soil					IE-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	E1	SE191305.001	%	60 - 130%	108
	E4	SE191305.004	%	60 - 130%	117
	E9	SE191305.009	%	60 - 130%	99
VOC's in Soil Method: ME-(AU)-(EN)					

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	E1	SE191305.001	%	60 - 130%	78
	E2	SE191305.002	%	60 - 130%	78
	E3	SE191305.003	%	60 - 130%	78

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC's in Soil (continued)				Method: MI	E-(AU)-[ENV]AN4
arameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	<u>E4</u>	SE191305.004	%	60 - 130%	83
	E5	SE191305.005	%	60 - 130%	77
	E6	SE191305.006	%	60 - 130%	77
	E7	SE191305.007	%	60 - 130%	75
	E8	SE191305.008	%	60 - 130%	81
	E9	SE191305.009	%	60 - 130%	76
	Split	SE191305.011	%	60 - 130%	74
	Trip Spike	SE191305.012	%	60 - 130%	83
	Trip Blank	SE191305.013	%	60 - 130%	81
d4-1,2-dichloroethane (Surrogate)	E1	SE191305.001	%	60 - 130%	105
	E2	SE191305.002	%	60 - 130%	95
	E3	SE191305.003	%	60 - 130%	115
	E4	SE191305.004	%	60 - 130%	107
	E5	SE191305.005	%	60 - 130%	98
	E6	SE191305.006	%	60 - 130%	92
	E7	SE191305.007	%	60 - 130%	100
	E8	SE191305.008	%	60 - 130%	99
	E9	SE191305.009	%	60 - 130%	88
	Split	SE191305.011	%	60 - 130%	104
	Trip Spike	SE191305.012	%	60 - 130%	94
	Trip Blank	SE191305.013	%	60 - 130%	110
d8-toluene (Surrogate)	E1	SE191305.001	%	60 - 130%	82
	E2	SE191305.002	%	60 - 130%	80
	E3	SE191305.003	%	60 - 130%	79
	E4	SE191305.004	%	60 - 130%	90
	E5	SE191305.005	%	60 - 130%	70
	E6	SE191305.006	%	60 - 130%	80
	E7	SE191305.007	%	60 - 130%	85
	E8	SE191305.008	%	60 - 130%	78
	E9	SE191305.009	%	60 - 130%	74
	Split	SE191305.011	%	60 - 130%	79
	Trip Spike	SE191305.012	%	60 - 130%	77
	Trip Blank	SE191305.013	%	60 - 130%	84
Dibromofluoromethane (Surrogate)	E1	SE191305.001	%	60 - 130%	74
	E2	SE191305.002	%	60 - 130%	78
	E3	SE191305.003	%	60 - 130%	78
	 E4	SE191305.004	%	60 - 130%	84
	E5	SE191305.005	%	60 - 130%	76
	 E6	SE191305.006	%	60 - 130%	79
	E7	SE191305.007	%	60 - 130%	73
	E8	SE191305.008	%	60 - 130%	80
	 E9	SE191305.009	%	60 - 130%	78
	Split	SE191305.011	%	60 - 130%	76
		SE191305.012	%	60 - 130%	75
	Trip Spike	SE 191303.012	70	00 - 130%	10

_\ <i>II</i>	200	in V	Vater
- V V	JUS	II I V	valer

VOCs in Water	Method: M	Method: ME-(AU)-[ENV]AN433			
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	Rin -1	SE191305.010	%	40 - 130%	96
d4-1,2-dichloroethane (Surrogate)	Rin -1	SE191305.010	%	40 - 130%	98
d8-toluene (Surrogate)	Rin -1	SE191305.010	%	40 - 130%	99
Dibromofluoromethane (Surrogate)	Rin -1	SE191305.010	%	40 - 130%	111
Volatile Petroleum Hydrocarbons in Soil Method: N					E-(AU)-[ENV]AN433

Volatile Petroleum Hydrocarbons in Soil

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	E1	SE191305.001	%	60 - 130%	78
	E2	SE191305.002	%	60 - 130%	78
	E3	SE191305.003	%	60 - 130%	78
	E4	SE191305.004	%	60 - 130%	83
	E5	SE191305.005	%	60 - 130%	77
	E6	SE191305.006	%	60 - 130%	77
	E7	SE191305.007	%	60 - 130%	75

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[ENV]AN433 Recovery % Sample Number Units Criteria Parameter Sample Nan Bromofluorobenzene (Surrogate) E8 SE191305.008 % 60 - 130% 81 E9 SE191305.009 % 60 - 130% 76 Split SE191305.011 % 60 - 130% 74 Trip Blank SE191305.013 % 60 - 130% 81 d4-1,2-dichloroethane (Surrogate) E1 SE191305.001 % 60 - 130% 105 F2 SE191305.002 % 60 - 130% 95 E3 SE191305.003 % 60 - 130% 115 E4 60 - 130% SE191305.004 % 107 E5 SE191305.005 % 60 - 130% 98 E6 SE191305.006 % 60 - 130% 92 SE191305.007 60 - 130% 100 E7 % E8 SE191305.008 99 % 60 - 130% E9 SE191305.009 % 60 - 130% 88 Split SE191305.011 % 60 - 130% 104 Trip Blank SE191305.013 % 60 - 130% 110 d8-toluene (Surrogate) E1 SE191305.001 % 60 - 130% 82 80 E2 SE191305.002 % 60 - 130% E3 SE191305.003 % 60 - 130% 79 E4 SE191305.004 % 60 - 130% 90 E5 SE191305.005 % 60 - 130% 70 E6 SE191305.006 % 60 - 130% 80 E7 SE191305.007 % 60 - 130% 85 E8 SE191305.008 % 60 - 130% 78 E9 74 SE191305.009 % 60 - 130% Split SE191305.011 % 60 - 130% 79 Trip Blank SE191305.013 60 - 130% 84 % Dibromofluoromethane (Surrogate) 74 E1 SE191305.001 % 60 - 130% E2 SE191305.002 % 60 - 130% 78 SE191305.003 60 - 130% 78 E3 % E4 SE191305.004 60 - 130% 84 % E5 SE191305.005 % 60 - 130% 76 E6 SE191305.006 60 - 130% % 79 E7 SE191305.007 % 60 - 130% 77 E8 SE191305.008 % 60 - 130% 80 E9 SE191305.009 % 60 - 130% 78 76 Split SE191305.011 % 60 - 130% Trip Blank SE191305.013 % 60 - 130% 77 Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	Rin -1	SE191305.010	%	40 - 130%	96
d4-1,2-dichloroethane (Surrogate)	Rin -1	SE191305.010	%	60 - 130%	98
d8-toluene (Surrogate)	Rin -1	SE191305.010	%	40 - 130%	99
Dibromofluoromethane (Surrogate)	Rin -1	SE191305.010	%	40 - 130%	111

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[E	NVJAN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB171109.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil			м	ethod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB171091.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

nple Number	Parameter	Units	LOR	Result
71088.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	102

OP Pesticides in Soil			Meth	od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB171088.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	82
	d14-p-terphenyl (Surrogate)	%	-	92
PAH (Polynuclear Aromatic Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AN42
Sample Number	Parameter	Units	LOR	Result
LB171088.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1

Anthracene

<0.1

0.1

mg/kg

SE191305 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN420 PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Sample Number Parameter Units LOR Result LB171088.001 Fluoranthene mg/kg 0.1 < 0.1 Pyrene mg/kg 0.1 <0.1 0.1 <0.1 Benzo(a)anthracene mg/kg Chrysene mg/kg 0.1 < 0.1 Benzo(a)pyrene 0.1 <0.1 mg/kg Indeno(1,2,3-cd)pyrene 0.1 <0.1 mg/kg <0.1 Dibenzo(ah)anthrace mg/kg 0.1 Benzo(ghi)perylene mg/kg 0.1 <0.1 Total PAH (18) mg/kg 0.8 <0.8 Surrogates d5-nitrobenzene (Surrogate) % 86 2-fluorobiphenyl (Surrogate) % 82 d14-p-terphenyl (Surrogate) % 92 PAH (Polynuclear Aromatic Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN420 Sample Number Result Units LOR Parameter LB170986-001 Naphthalene µg/L 0.1 <0.1 2-methylnaphthalene <0.1 0.1 µg/L 1-methylnaphthalene µg/L 0.1 < 0.1 Acenaphthylene 0.1 <0.1 µg/L Acenaphthene 0.1 <0.1 µg/L Fluorene µg/L 0.1 < 0.1 Phenanthrene µg/L 0.1 <0.1 <0.1 0.1 Anthracene µg/L Fluoranthene µg/L 0.1 < 0.1 Pyrene 0.1 <0.1 µg/L Benzo(a)anthracene 0.1 <0.1 µg/L Chrysene µg/L 0.1 < 0.1 Benzo(a)pyrene µg/L 0.1 <0.1 Indeno(1,2,3-cd)pyrene <0.1 0.1 µg/L Dibenzo(ah)anthracene µg/L 0.1 < 0.1 Benzo(ghi)perylene µg/L 0.1 <0.1 Surrogates d5-nitrobenzene (Surrogate) 64 % -2-fluorobiphenyl (Surrogate) % 66 d14-p-terphenyl (Surrogate) % _ 78 PCBs in Soil Method: ME-(AU)-[ENV]AN420 Sample Numb Parameter Units LOR Result LB171088.001 Arochlor 1016 mg/kg 0.2 < 0.2 Arochlor 1221 0.2 <0.2 mg/kg Arochlor 1232 0.2 <0.2 mg/kg Arochlor 1242 mg/kg 02 <0.2 Arochlor 1248 0.2 <0.2 mg/kg Arochlor 1254 0.2 <0.2 mg/kg Arochlor 1260 mg/kg 0.2 <0.2 Arochlor 1262 0.2 <0.2 mg/kg <0.2 Arochlor 1268 0.2 mg/kg Total PCBs (Arochlors) mg/kg 1 <1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) 102 % Total Cyanide in soil by Discrete Analyser (Aquakem) Method: ME-(AU)-[ENV]AN077/AN287 Sample Numbe Units LOR Result Parameter LB171340.001 Total Cyanide mg/kg 0.5 <0.5

Total Phenolics in Soil			м	lethod: ME-(AU)-[ENV]AN289
Sample Number	Parameter	Units	LOR	Result
LB171234.001	Total Phenols	mg/kg	0.1	<0.1

Total Recoverable Elements in Soil/Waste Solids/Materia	is by ICPOES		Method: ME-(AU)-[ENV]AN040/AN320
Sample Number	Parameter	Units	LOR

SE191305 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

		Development of the second se	L1: 14		Descult
Sample Number		Parameter	Units	LOR	Result
B171090.001		Arsenic, As	mg/kg	1	<1
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.3	<0.3
		Copper, Cu	mg/kg	0.5	<0.5
		Nickel, Ni	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Zinc, Zn	mg/kg	2	<2.0
race Metals (Dissolved	I) in Water by ICPMS			Metho	d: ME-(AU)-[ENV]AI
	,	Deremeter	Units	LOR	Result
ample Number		Parameter			
B171101.001		Arsenic, As	μg/L	1	<1
		Cadmium, Cd	μg/L	0.1	<0.1
		Chromium, Cr	μg/L	1	<1
		Copper, Cu	μg/L	1	<1
		Lead, Pb	μg/L	1	<1
		Nickel, Ni	μg/L	1	<1
		Zinc, Zn	μg/L	5	<5
RH (Total Recoverable	Hydrocarbons) in Soil			Metho	d: ME-(AU)-[ENV]A
ample Number		Parameter	Units	LOR	Result
B171088.001		TRH C10-C14	mg/kg	20	<20
		TRH C10-C14 TRH C15-C28		45	<20
			mg/kg		
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
RH (Total Recoverable	Hydrocarbons) in Water			Metho	d: ME-(AU)-[ENV]A
ample Number		Parameter	Units	LOR	Result
.B170986.001		TRH C10-C14	µg/L	50	<50
		TRH C15-C28	<u>µ9/L</u>	200	<200
		TRH C29-C36	µg/L	200	<200
		TRH C32-C30	μg/L	200	<200
			hâir		
'OC's in Soil				Metho	od: ME-(AU)-[ENV]A
Sample Number		Parameter	Units	LOR	Result
B171087.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	83
	00.1090.00	d4-1,2-dichloroethane (Surrogate)	%		104
		d8-toluene (Surrogate)	%		94
				-	80
	Tatala	Bromofluorobenzene (Surrogate)	%		
	Totals	Total BTEX	mg/kg	0.6	<0.6
OCs in Water				Metho	od: ME-(AU)-[ENV]A
Sample Number		Parameter	Units	LOR	Result
B171142.001	Monocyclic Aromatic	Benzene	µg/L	0.5	<0.5
	Hydrocarbons	Toluene	µg/L	0.5	<0.5
	•	Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene		0.5	<0.5
			μg/L		
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	108
		d4-1,2-dichloroethane (Surrogate)	%	-	95
		d8-toluene (Surrogate)	%	-	99
		Bromofluorobenzene (Surrogate)	%	-	95

SE191305 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB171087.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	83
		d4-1,2-dichloroethane (Surrogate)	%	-	104
		d8-toluene (Surrogate)	%	-	94
Volatile Petroleum Hyd	drocarbons in Water			Metho	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB171142.001		TRH C6-C9	μg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	108
	Junogales	Disformentation (Gurrogate)	/0		
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	95
	Sunogates			-	

Method: ME-(AU)-IENVIAN312

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved)	in Water				Metho	d: ME-(AU)-[I	ENVJAN311(P	Perth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE191296.009	LB171109.014	Mercury	µg/L	0.0001	0.00356	0.00518	200	37

Mercury in Soil

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE191305.002	LB171091.014	Mercury	mg/kg	0.05	0.05	0.06	122	11
SE191305.011	LB171091.023	Mercury	mg/kg	0.05	<0.05	<0.05	200	0

Moisture Content

Moisture Content Method: ME-(AU)-[ENV]								ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE191305.013	LB171089.022	% Moisture	%w/w	0.5	<0.5	<0.5	200	0

OC Peeticides in Soil

C Pesticides in S	Soll					Meth	od: ME-(AU)-	[ENV]AN4
riginal	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E191305.004	LB171088.024	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
		Alpha BHC	mg/kg	0.1	<0.1	0	200	0
		Lindane	mg/kg	0.1	<0.1	0	200	0
		Heptachlor	mg/kg	0.1	<0.1	0	200	0
		Aldrin	mg/kg	0.1	<0.1	0	200	0
		Beta BHC	mg/kg	0.1	<0.1	0	200	0
		Delta BHC	mg/kg	0.1	<0.1	0	200	0
		Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
		o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
		Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
		Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
		Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
		trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
		p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
		Dieldrin	mg/kg	0.2	<0.2	0	200	0
		Endrin	mg/kg	0.2	<0.2	0	200	0
		o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
		o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
		Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
		p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
		p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
		Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
		Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
		Methoxychlor	mg/kg	0.1	<0.1	0	200	0
		Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
		Isodrin	mg/kg	0.1	<0.1	0	200	0
		Mirex	mg/kg	0.1	<0.1	0	200	0
		Total CLP OC Pesticides	mg/kg	1	<1	0	200	0
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg		0.18	0.17	30	3

Units Original Duplicate Parameter LOR Original Duplicate Criteria % RPD % SE191305.004 LB171088.025 Dichlorvos mg/kg 0.5 < 0.5 0 200 0 Dimethoate mg/kg 0.5 <0.5 0.01 200 0 200 Diazinon (Dimpylate) 0.5 <0.5 0 0 mg/kg Fenitrothion mg/kg 0.2 < 0.2 0.01 200 0 Malathion 0.2 <0.2 0.04 200 0 mg/kg 0.02 Chlorpyrifos (Chlorpyrifos Ethyl) 0.2 <0.2 200 0 mg/kg Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 0.03 200 0 Bromophos Ethyl mg/kg 0.2 <0.2 0.03 200 0 Methidathion 0.5 <0.5 200 0 0 mg/kg Ethion mg/kg 0.2 <0.2 0.01 200 0 Azinphos-methyl (Guthion) 0.2 <0.2 0.09 200 0 mg/kg Total OP Pesticides* 1.7 <1.7 0 200 0 mg/kg

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Arochlor 1242

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

P Pesticides in S	. ,		D		1.00	0		nod: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
E191305.004	LB171088.025	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.45	30	0
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.43	30	0
AH (Polynuclear	Aromatic Hydrocarbo	ons) in Soil					Meth	nod: ME-(AU)-	[ENV]A
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E191305.004	LB171088.025		Naphthalene	mg/kg	0.1	<0.1	0.01	200	C
			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0.01	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0.08	148	0
			Acenaphthene	mg/kg	0.1	<0.1	0	200	0
			Fluorene	mg/kg	0.1	<0.1	0.01	200	0
			Phenanthrene	mg/kg	0.1	<0.1	0.04	200	C
			Anthracene	mg/kg	0.1	<0.1	0.04	200	C
			Fluoranthene	mg/kg	0.1	<0.1	0.01	200	0
			Pyrene	mg/kg	0.1	<0.1	0.03	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.04	200	0
			Chrysene	mg/kg	0.1	<0.1	0.05	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.03	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.03	200	C
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0.02	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.04	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.01	200	C
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.03	200	C
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td>C</td></lor=0<>	mg/kg	0.2	<0.2	0	200	C
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>C</td></lor=lor<>	mg/kg	0.3	<0.3	0.242	134	C
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>C</td></lor=lor>	mg/kg	0.2	<0.2	0.121	175	C
			Total PAH (18)	mg/kg	0.8	<0.8	0	200	C
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.43	30	2
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.45	30	0
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.43	30	C
E191305.011	LB171088.023		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	C
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	C
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	C
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	C
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	C
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	C
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	C
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	C
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	C
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	C
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	C
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	C
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	C
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	C
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>C</td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	C
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>C</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	C
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	C
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	C
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
CBs in Soil							Meth	nod: ME-(AU)-	[ENV]/
Driginal	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	RPD
E191305.004	LB171088.024		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
						-0.0		000	

<0.2

0

200

0.2

mg/kg

0

0

0

0

0

0

3

14

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Method: ME-(AU)-[ENV]AN420 PCBs in Soil (continued) Original Duplicate LOR Original Duplicate Criteria % RPD % Parameter Units SE191305.004 LB171088.024 Arochlor 1248 mg/kg 0.2 < 0.2 0 200 Arochlor 1254 mg/kg 0.2 <0.2 0 200 200 Arochlor 1260 0.2 <0.2 0 mg/kg < 0.2 Arochlor 1262 mg/kg 0.2 0 200 Arochlor 1268 0.2 <0.2 0 200 mg/kg Total PCBs (Arochlors) <1 0 200 mg/kg 1 Tetrachloro-m-xylene (TCMX) (Surrogate) 0.17 Surrogates 0 30 mg/kg -**Total Phenolics in Soil** Method: ME-(AU)-[ENV]AN289 LOR Original Duplicate Criteria % RPD % Original Parameter Units Duplicate SE191305.001 LB171234.004 Total Phenols 0.1 0.1 0.1 93 mg/kg

Original	Duplicate		Parameter	Units	LOR	Original	Duplica <u>te</u>	Criteria %	RPD 9
SE191305.002	LB171090.014		Arsenic, As	mg/kg	1	4	4	54	5
			Cadmium, Cd	mg/kg	0.3	0.8	1.1	62	28
			Chromium, Cr	mg/kg	0.3	34	37	31	8
			Copper, Cu	mg/kg	0.5	100	130	30	21
			Nickel, Ni	mg/kg	0.5	37	35	31	5
			Lead, Pb	mg/kg	1	69	76	31	9
			Zinc, Zn	mg/kg	2	1100	910	30	15
SE191305.011	LB171090.023		Arsenic, As	mg/kg	1	5	6	47	15
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.3	2.8	4.5	44	46 🤅
			Copper, Cu	mg/kg	0.5	7.8	10	36	26
			Nickel, Ni	mg/kg	0.5	<0.5	1.1	95	78
			Lead, Pb	mg/kg	1	6	12	41	67 🤅
			Zinc, Zn	mg/kg	2	6.6	11	52	54 (
race Metals (Dis	solved) in Water by ICPM	IS					Meth	od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE191341.001	LB171101.013		Arsenic, As	μg/L	1	6.866	6.863	30	0
			Cadmium, Cd	µg/L	0.1	0.038	0.036	200	0
			Chromium, Cr	μg/L	1	0.047	0.041	200	0
			Copper, Cu	μg/L	1	0.068	0.051	200	0
			Lead, Pb	μg/L	1	-0.014	-0.016	200	0
			Nickel, Ni	μg/L	1	9.907	9.453	25	5
			Zinc, Zn	µg/L	5	10.197	9.814	65	4
RH (Total Recov	erable Hydrocarbons) in	Soil					Meth	od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE191305.004	LB171088.025		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	58	56	109	4
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total		110	<110	56	200	0
			1111010-030 1018	mg/kg				200	0
			TRH C10-C40 Total (F bands)	mg/kg mg/kg	210	<210	0	200	
		TRH F Bands				<210 <25	0	200	0
		TRH F Bands	TRH C10-C40 Total (F bands)	mg/kg	210				0
		TRH F Bands	TRH C10-C40 Total (F bands) TRH >C10-C16	mg/kg mg/kg	210 25	<25	0	200	
		TRH F Bands	TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg mg/kg	210 25 25	<25 <25	0 0	200 200	0
SE191305.011	LB171088.023	TRH F Bands	TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg	210 25 25 90	<25 <25 <90	0 0 0	200 200 200	0 0 0
SE191305.011		TRH F Bands	TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg	210 25 25 90 120	<25 <25 <90 <120	0 0 0 0	200 200 200 200	0
SE191305.011		TRH F Bands	TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	210 25 25 90 120 20	<25 <25 <90 <120 <20	0 0 0 0 <20	200 200 200 200 200	0 0 0
SE191305.011		TRH F Bands	TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	210 25 25 90 120 20 45	<25 <25 <90 <120 <20 <45	0 0 0 0 <20 <45	200 200 200 200 200 200 200	0 0 0 0
SE191305.011		TRH F Bands	TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	210 25 25 90 120 20 45 45	<25 <25 <90 <120 <20 <45 <45	0 0 0 <20 <45 <45	200 200 200 200 200 200 200 200	0 0 0 0 0
SE191305.011		TRH F Bands	TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	210 25 25 90 120 20 45 45 45	<25 <25 <90 <120 <20 <45 <45 <45 <100	0 0 0 <20 <45 <45 <100	200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0
SE191305.011		TRH F Bands	TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	210 25 25 90 120 20 45 45 100 110	<pre><25 <25 <90 <120 <20 <45 <45 <100 <110</pre>	0 0 0 <20 <45 <45 <100 <110	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0
SE191305.011			TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	210 25 25 90 120 20 45 45 100 110 210	<pre><25 <25 <90 <120 <20 <45 <45 <100 <110 <210</pre>	0 0 0 <20 <45 <45 <100 <110 <210	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	od: ME-(AU)- Criteria %	RPD %
SE191305.011	LB171088.023	TRH F Bands	TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
				iiig/kg	120	\$120			
	erable Hydrocarbons	s) in Water						od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE191292.001	LB170986.023		TRH C10-C14	µg/L	50	0	0	200	0
			TRH C15-C28	μg/L	200	0	0	200	0
			TRH C29-C36	μg/L	200	0	0	200	0
			TRH C37-C40	μg/L	200	0	0	200	0
			TRH C10-C36	μg/L	450	0	0	200	0
			TRH C10-C40	μg/L	650	0	0	200	0
		TRH F Bands	TRH >C10-C16	μg/L	60	0	0	200	0
			TRH >C16-C34 (F3)	μg/L	500	0	0	200	0
			TRH >C34-C40 (F4)	µg/L	500	0	0	200	0
/OC's in Soil							Meth	od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate		RPD [•]
SE191305.002	LB171087.014	Monocyclic	Benzene		0.1	<0.1	<0.1	200	0
GE 191303.002	LD1/100/.014	Monocyclic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic		mg/kg		<0.1	<0.1	200	0
			Ethylbenzene	mg/kg mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene		0.2	<0.2	<0.2	200	0
		Polycyclic	o-xylene Naphthalene	mg/kg mg/kg	0.1	<0.1	<0.1	200	0
					-	3.9	4.0	50	2
		Surrogates	Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg		4.8	4.0	50	6
				mg/kg		4.0	4.5	50	2
			d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg		3.9	3.8	50	3
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
		Totals		mg/kg			<0.5		0
05404005 044	10474007.000		Total BTEX	mg/kg	0.6	<0.6		200	
SE191305.011	LB171087.026	Monocyclic	Benzene	mg/kg	0.1	<0.1	0.01	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	0	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	0	200	0
			m/p-xylene	mg/kg	0.2	<0.2	0	200	0
			o-xylene	mg/kg	0.1	<0.1	0	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	0.01	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.8	3.81	50	0
			d4-1,2-dichloroethane (Surrogate)	mg/kg		5.2	4.88	50 50	
			d8-toluene (Surrogate)	mg/kg		3.9	3.74		5
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.7	3.77	50	
		Totals	Total Xylenes	mg/kg	0.3	< 0.3	0	200	0
			Total BTEX	mg/kg	0.6	<0.6	0.01	200	0
OCs in Water							Meth	od: ME-(AU)-	(ENVJAN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE191277.001	LB171142.022	Monocyclic	Benzene	µg/L	0.5	<0.5	<0.5	200	0
		Aromatic	Toluene	µg/L	0.5	<0.5	<0.5	200	0
			Ethylbenzene	µg/L	0.5	<0.5	<0.5	200	0
			m/p-xylene	µg/L	1	<1	<1	200	0
			o-xylene	µg/L	0.5	<0.5	<0.5	200	0
		Polycyclic	Naphthalene	µg/L	0.5	<0.5	<0.5	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.0	4.1	30	19
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.5	5.9	30	27
			d8-toluene (Surrogate)	µg/L	-	4.7	4.3	30	9
			Bromofluorobenzene (Surrogate)	μg/L	_	4.7	4.4	30	5
SE191305.010	LB171142.023	Monocyclic	Benzene	μg/L	0.5	<0.5	0	200	0
		Aromatic	Toluene	μg/L	0.5	<0.5	0	200	0
			Ethylbenzene	μg/L	0.5	<0.5	0	200	0
			m/p-xylene		1	<0.5	0	200	0
				μg/L		<0.5	0	200	0
		Bolyovelie	o-xylene	µg/L	0.5		0		0
		Polycyclic	Naphthalene	µg/L	0.5	< 0.5	5.95	200 30	7
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L		5.6			
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.9	5.53	30	12
				ua/l		5.0	4 97	30	

d8-toluene (Surrogate)

0

5.0

µg/L

4.97

30

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOCs in Water (co	ontinued)						Met	hod: ME-(AU)-	[ENV]AN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE191305.010	LB171142.023	Surrogates	Bromofluorobenzene (Surrogate)	µg/L	-	4.8	4.73	30	1
Volatile Petroleum	Hydrocarbons in So	1					Met	hod: ME-(AU)-	(ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE191305.002	LB171087.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	4.0	30	2
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.8	4.5	30	6
			d8-toluene (Surrogate)	mg/kg	-	4.0	4.1	30	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.9	3.8	30	3
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE191305.011	LB171087.026		TRH C6-C10	mg/kg	25	<25	0	200	0
			TRH C6-C9	mg/kg	20	<20	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.8	3.81	30	0
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.2	4.88	30	7
			d8-toluene (Surrogate)	mg/kg	-	3.9	3.74	30	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.7	3.77	30	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	0.01	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	-0.01	200	0
Volatile Petroleum	Hydrocarbons in Wa	ater					Met	hod: ME-(AU)-	(ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE191277.001	LB171142.022		TRH C6-C10	µg/L	50	<50	<50	200	0
			TRH C6-C9	µg/L	40	<40	<40	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.0	4.1	30	19
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	4.5	5.9	30	27
			d8-toluene (Surrogate)	µg/L	-	4.7	4.3	30	9
			Bromofluorobenzene (Surrogate)	µg/L	-	4.7	4.4	30	5
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	200	0
SE191305.010	LB171142.023		TRH C6-C10	µg/L	50	<50	0	200	0
			TRH C6-C9	µg/L	40	<40	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.6	5.95	30	7
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.9	5.53	30	12
			d8-toluene (Surrogate)	µg/L	-	5.0	4.97	30	0
			Bromofluorobenzene (Surrogate)	µg/L	-	4.8	4.73	30	1
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	0	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	0	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil Method: ME-(lethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB171091.002	Mercury		mg/kg	0.05	0.23	0.2	70 - 130	114

B171088.002 Heptachlor mg/kg 0.1 0.2 0.2 60 - 140 101 Aldrin mg/kg 0.1 0.2 0.2 60 - 140 101 Delta BHC mg/kg 0.1 0.2 0.2 60 - 140 101 Delta BHC mg/kg 0.1 0.2 0.2 60 - 140 98 Dieldrin mg/kg 0.2 0.2 0.2 60 - 140 98 p.p' DDT mg/kg 0.1 0.2 0.2 60 - 140 98 surrogates Tetrachloro-m.xylene (TCMX) (Surrogate) mg/kg 0.1 0.2 0.2 60 - 140 98 Surrogates Tetrachloro-m.xylene (TCMX) (Surrogate) mg/kg 0.1 0.2 0.2 60 - 140 87 Surrogates Tetrachloro-m.xylene (TCMX) (Surrogate) mg/kg 0.1 0.2 0.15 40 - 130 102 B171088.002 Dichlorvos mg/kg 0.5 1.6 2 60 - 140 78 B171088.002 Dichlorvos mg/kg 0.5 1.6 2 60 - 140 90 Diazinon (Dimpylate) mg/kg 0.5 1.6 2 60 - 140 81 Diazinon (Surrogate) <t< th=""><th>OC Pesticides in S</th><th>oil</th><th></th><th></th><th></th><th></th><th></th><th>Nethod: ME-(A</th><th>U)-[ENV]AN42</th></t<>	OC Pesticides in S	oil						Nethod: ME-(A	U)-[ENV]AN42
Adrin mg/kg 0.1 0.2 0.2 60 - 140 101 Delat BHC mg/kg 0.1 0.2 0.2 60 - 140 98 Delat BHC mg/kg 0.2 0.2 0.2 60 - 140 98 Delat BHC mg/kg 0.2 0.2 0.2 60 - 140 98 Delatin mg/kg 0.2 0.2 0.2 60 - 140 98 propates Tetrachoro-msylene (TCMX) (Surogate) mg/kg 0.1 0.2 0.2 60 - 140 98 Surogates Tetrachoro-msylene (TCMX) (Surogate) mg/kg 0.1 0.2 0.2 60 - 140 98 B171088.02 Diaziono (Dimpylate) mg/kg 0.5 1.8 2 60 - 140 78 B171088.02 Diaziono (Dimpylate) mg/kg 0.2 1.8 2 60 - 140 98 Surogates 2-fuoropineny (Surogate) mg/kg 0.2 1.8 2 60 - 140 81 Surogates	Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Delta BHC mg/kg 0.1 0.2 0.2 60-140 98 Deletin mg/kg 0.2 0.2 0.2 0.0 106 Endin mg/kg 0.2 0.2 0.2 0.0 106 p.p':DDT mg/kg 0.1 0.2 0.2 0.0 102 Surrogates Tetachlorom-xylene (TCMX) (Surrogate) mg/kg 0.1 0.15 40.130 102 Prestictes In Sci Tetachlorom-xylene (TCMX) (Surrogate) mg/kg 0.5 1.6 2 0.0140 78 Sample Number Parameter Units COR Result Extercet 78 B171088.02 Dichoros mg/kg 0.5 1.6 2 60.140 78 B17088.02 Dichoros mg/kg 0.2 1.6 2 60.140 98 B17088.02 Dichoros mg/kg 0.5 1.6 2 60.140 98 B17088.02 Dichoros mg/kg 0.5	LB171088.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	101
Dieldrin mg/kg 0.2 0.2 0.2 0.0 0.0 Endrin mg/kg 0.2 <0.2			Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	101
Endrin mg/kg 0.2 <0.2 <0.2 0.2 6.0 98 p.PODT mg/kg 0.1 0.2 0.2 60.140 98 Surrogates Tetrachtor-m.xyleen (TCMX) (Surrogate) mg/kg 0.1 0.2 0.2 60.140 98 Pesticides In Soll Etrachtor-m.xyleen (TCMX) (Surrogate) mg/kg 0.15 0.15 40.130 102 B171088.002 Dichlorvos mg/kg 0.5 1.6 2 60.140 98 B171088.002 Dichlorvos mg/kg 0.5 1.8 2 60.140 90 Chlorophrifies (Chi/ophylate) mg/kg 0.2 1.7 2 60.140 851 Surrogates Plucoholphenyl (Surrogate) mg/kg 0.2 1.6 2 60.140 851 B171088.002 Mg/kg 0.2 1.6 2 60.140 851 B171088.002 Mg/kg 0.1 3.9 4 60.140 97 B171088.002 <			Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	98
pp-DDT mg/kg 0.1 0.2 0.2 60 - 140 87 Surogates Tetrachoro-m-xylene (TCMX) (Surogate) mg/kg - 0.15 0.15 40 - 130 102 P Pest Entrope			Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	106
Surogates Tetrachloro-m-xylene (TCMX) (Surogate) mg/kg - 0.15 0.15 40 - 130 102 P Pesticides In Soll Wethod: ME-(AU)-(ENV)ANA Sample Number Parameter Units LOR Result Expected Criteria % Recovery % Bit71088.002 Dichlorvos mg/kg 0.5 1.6 2 60 - 140 78 Dichlorvofing (Chopyrifing Chopyrifing (Cho			Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	98
P Pesticides in Soll Mathematical Stample Number Parameter Units LOR Result Expected Criteria % Recovery S B171088.002 Dichionvos mg/kg 0.5 1.6 2 60 - 140 78 Dichionvos mg/kg 0.5 1.6 2 60 - 140 78 Diaziono (Dimpylate) mg/kg 0.2 1.7 2 60 - 140 81 Ethion mg/kg 0.2 1.6 2 60 - 140 81 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg 0.2 1.6 2 60 - 140 81 Sample Number mg/kg 0.2 1.6 2 60 - 140 81 Sample Number Parameter mg/kg 0.1 0.4 0.5 40 - 130 88 B171088.002 Parameter Parameter mg/kg 0.1 3.9 4 60 - 140 97 Acenaphthylene mg/kg 0.1 3.9 4 60 - 140 1100 <			p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	87
Sample Number Parameter Units LOR Result Expected Criteria % Recover y B171088.002 Dichlorvos mg/kg 0.5 1.6 2 60 - 140 78 Diazinon (Dimpylate) mg/kg 0.5 1.8 2 60 - 140 90 Chloroprifics (Chloryrifics Ethiy) mg/kg 0.2 1.7 2 60 - 140 85 Ethion mg/kg 0.2 1.6 2 60 - 140 85 Surrogates 2-fluorobiphenyl (Surogate) mg/kg 0.2 1.6 2 60 - 140 85 Atl (Polynuclear Aromatic Hydrocarbons) In Sol mg/kg 0.2 1.6 2 60 - 140 92 Atl (Polynuclear Aromatic Hydrocarbons) In Sol mg/kg 0.1 3.9 4 60 - 140 97 Barple Number Parameter Units LOR Result Expected Criteria % Recovery s Barple Number Parameter units LOR Result Expected Cri		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	40 - 130	102
Bir 71088.002 Dichlorvos mg/kg 0.5 1.6 2 60 - 140 90 Diazion (Dimpilate) mg/kg 0.5 1.8 2 60 - 140 90 Chlorpyrifos (Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 1.7 2 60 - 140 85 Ethion mg/kg 0.2 1.6 2 60 - 140 85 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg 0.2 1.6 2 60 - 140 85 Atl-P-terphenyl (Surrogate) mg/kg 0.1 0.4 0.5 40 - 130 82 Atl Polynuclear Aromatic Hydrocarbonic mg/kg 0.1 3.9 4 60 - 140 97 Bir 1088.002 Maphthalene mg/kg 0.1 3.9 4 60 - 140 97 Bir 1088.002 Maphthalene mg/kg 0.1 3.9 4 60 - 140 97 Bir 1088.002 Maphthalene mg/kg 0.1 4.8 4 60 - 140 101	OP Pesticides in S	oil						Nethod: ME-(A	U)-[ENV]AN42
Number Diazion (Dimpylate) mg/kg 0.5 1.8 2 60 - 140 90 Surrogates 2-fluorobiphenyl (Surogate) mg/kg 0.2 1.7 2 60 - 140 85 Atl (Polyprifos (Chlorpyrifos Ethyl) mg/kg 0.2 1.6 2 60 - 140 85 Surrogates 2-fluorobiphenyl (Surogate) mg/kg - 0.4 0.5 40 - 130 88 Atl (Polynuclear Aromatic Hydrocarbors) In Sol mg/kg - 0.5 0.5 40 - 130 88 Sample Number Parameter Vinits Core Recovery 5 Recovery 5 Sample Number Parameter Mg/kg 0.1 3.9 4 60 - 140 98 Accanaphthylene mg/kg 0.1 3.9 4 60 - 140 98 Accanaphthylene mg/kg 0.1 4.0 40 - 140 100 119 Fluoranthene mg/kg 0.1 4.8 4 60 - 140 119 Pre	Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Chlorpyrifes Ethyl) mg/kg 0.2 1.7 2 60 - 140 85 Ethion mg/kg 0.2 1.6 2 60 - 140 81 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg 0.2 1.6 2 60 - 140 81 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg 0.2 0.5 0.5 40 - 130 88 Atl (Polynuclear Aromatic Hydrocarbors) in Sol Wethod: WE-(AU)-[ENV]AN4 Sample Number Parameter Units LOR Result Expected Criteria % Recovery S B171088.002 Naphthalene mg/kg 0.1 3.9 4 60 - 140 97 B171088.002 Maphthalene mg/kg 0.1 3.9 4 60 - 140 98 Acenaphthylene mg/kg 0.1 4.0 40 100 100 Phenanthrene mg/kg 0.1 4.8 4 60 - 140 111 111 111 111 111 111	LB171088.002		Dichlorvos	mg/kg	0.5	1.6	2	60 - 140	78
Ethion mg/kg 0.2 1.6 2 60 - 140 81 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 88 d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 92 AH (Polynuclear Aromatic Hydrocarbons) in Soll Sample Number Parameter Method: Method: Expected Criteria % Recovery % B171088.002 Naphthalene mg/kg 0.1 3.9 4 60 - 140 97 Accenaphthylene mg/kg 0.1 3.9 4 60 - 140 98 Accenaphthene mg/kg 0.1 3.9 4 60 - 140 98 Accenaphthene mg/kg 0.1 4.0 4 60 - 140 100 Phenanthrene mg/kg 0.1 4.8 4 60 - 140 121 Anthracene mg/kg 0.1 4.8 4 60 - 140 113 Pyrene mg/kg 0.1 </td <td></td> <td></td> <td>Diazinon (Dimpylate)</td> <td>mg/kg</td> <td>0.5</td> <td>1.8</td> <td>2</td> <td>60 - 140</td> <td>90</td>			Diazinon (Dimpylate)	mg/kg	0.5	1.8	2	60 - 140	90
Surrogates 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 88 AH (Polynuclear Aromatic Hydrocarbox) in Soil mg/kg - 0.5 0.5 40 - 130 92 AH (Polynuclear Aromatic Hydrocarbox) in Soil Kethod: ME-(AU)-JENVJANA Sample Number Parameter Units LOR Result Expected Criteria % Recovery G B171088.002 Naphthalene mg/kg 0.1 3.9 4 60 - 140 97 B4 (conspitue) Acenaphthylene mg/kg 0.1 3.9 4 60 - 140 97 Acenaphthylene mg/kg 0.1 3.9 4 60 - 140 98 Acenaphthene mg/kg 0.1 4.8 4 60 - 140 100 Phenanthrene mg/kg 0.1 4.8 4 60 - 140 113 Fluoranthrene mg/kg 0.1 4.8 4 60 - 140 113 Pyrene mg/kg 0.1			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.7	2	60 - 140	85
d14-p-terphenyl (Surrogate) mg/kg 0.5 0.5 40 - 130 92 AH (Potynuclear Aromatic Hydrocarbox) in Soi Ketto: KE-(EVV)ANA Sample Number Parameter Units LOR Result Expected Criteria % Recovery % BAT (1088.002 Naphthalene mg/kg 0.1 3.9 4 60 - 140 97 BAT (1088.002 Maphthalene mg/kg 0.1 3.9 4 60 - 140 97 BAT (1088.002 Maphthalene mg/kg 0.1 3.9 4 60 - 140 97 Acenaphthylene mg/kg 0.1 4.0 4 60 - 140 98 Acenaphthene mg/kg 0.1 4.0 4 60 - 140 100 Phenanthrene mg/kg 0.1 4.8 4 60 - 140 113 Fluoranthene mg/kg 0.1 4.5 4 60 - 140 113 Pyrene mg/kg 0.1 4.5 4 60 - 140 121			Ethion	mg/kg	0.2	1.6	2	60 - 140	81
AH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]ANA Sample Number Parameter Units LOR Result Expected Criteria % Recovery % B171088.002 Naphthalene mg/kg 0.1 3.9 4 60 - 140 97 Acenaphthylene mg/kg 0.1 3.9 4 60 - 140 98 Acenaphthylene mg/kg 0.1 4.8 4 60 - 140 100 Phenanthrene mg/kg 0.1 4.8 4 60 - 140 121 Anthracene mg/kg 0.1 4.8 4 60 - 140 113 Pyrene mg/kg 0.1 4.5 4 60 - 140 121 Anthracene mg/kg 0.1 4.5 4 60 - 140 113 Pyrene mg/kg 0.1 4.8 4 60 - 140 121 Benzo(a)pyrene mg/kg 0.1 4.8 4 60 - 140 121 Benzo(a)pyrene mg/		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	88
Sample Number Parameter Units LOR Result Expected Criteria % Recovery 6 B171088.002 Naphthalene mg/kg 0.1 3.9 4 60 - 140 97 Acenaphthylene mg/kg 0.1 3.9 4 60 - 140 98 Acenaphthylene mg/kg 0.1 4.0 4 60 - 140 100 Phenanthrene mg/kg 0.1 4.0 4 60 - 140 121 Anthracene mg/kg 0.1 4.8 4 60 - 140 113 Pyrene mg/kg 0.1 4.7 4 60 - 140 113 Benzo(a)pyrene mg/kg 0.1 4.8 4 60 - 140 121 Benzo(a)pyrene mg/kg 0.1 4.8 4 60 - 140 121 Benzo(a)pyrene mg/kg 0.1 4.8 4 60 - 140 121 Benzo(a)pyrene mg/kg 0.1 4.2 4 60 - 140 104 <td></td> <td></td> <td>d14-p-terphenyl (Surrogate)</td> <td>mg/kg</td> <td>-</td> <td>0.5</td> <td>0.5</td> <td>40 - 130</td> <td>92</td>			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	92
Bit 1088.002 Naphthalene mg/kg 0.1 3.9 4 60 - 140 97 Acenaphthylene mg/kg 0.1 3.9 4 60 - 140 98 Acenaphthylene mg/kg 0.1 3.9 4 60 - 140 98 Acenaphthylene mg/kg 0.1 4.0 4 60 - 140 100 Phenanthrene mg/kg 0.1 4.8 4 60 - 140 119 Anthracene mg/kg 0.1 4.5 4 60 - 140 113 Pyrene mg/kg 0.1 4.8 4 60 - 140 113 Benzo(a)pyrene mg/kg 0.1 4.8 4 60 - 140 121 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.8 4 60 - 140 121 2-fluorobiphenyl (Surrogate) mg/kg 0.1 4.2 4 60 - 140 121 Benzo(a)pyrene mg/kg 0.1 4.2 40 - 130 82 <td>PAH (Polynuclear</td> <td>Aromatic Hydroca</td> <td>irbons) in Soll</td> <td></td> <td></td> <td></td> <td></td> <td>dethod: ME-(A</td> <td>U)-[ENV]AN42</td>	PAH (Polynuclear	Aromatic Hydroca	irbons) in Soll					dethod: ME-(A	U)-[ENV]AN42
Acenaphthylene mg/kg 0.1 3.9 4 60 - 140 98 Acenaphthylene mg/kg 0.1 4.0 4 60 - 140 100 Phenanthrene mg/kg 0.1 4.8 4 60 - 140 121 Anthracene mg/kg 0.1 4.7 4 60 - 140 119 Fluoranthene mg/kg 0.1 4.5 4 60 - 140 113 Pyrene mg/kg 0.1 4.8 4 60 - 140 121 Benzo(a)pyrene mg/kg 0.1 4.8 4 60 - 140 121 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.8 4 60 - 140 121 2-fluorobiphenyl (Surrogate) mg/kg 0.1 4.2 4 60 - 140 104 Surrogates d5-nitrobenzene (Surrogate) mg/kg - 0.4 0.5 40 - 130 82	Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Acenaphthene mg/kg 0.1 4.0 4 60 - 140 100 Phenanthrene mg/kg 0.1 4.8 4 60 - 140 121 Anthracene mg/kg 0.1 4.7 4 60 - 140 119 Fluoranthene mg/kg 0.1 4.5 4 60 - 140 113 Pyrene mg/kg 0.1 4.8 4 60 - 140 121 Benzo(a)pyrene mg/kg 0.1 4.8 4 60 - 140 121 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.8 4 60 - 140 121 2-fluorobiphenyl (Surrogate) mg/kg 0.1 4.2 4 60 - 140 121 Surrogates d5-nitrobenzene (Surrogate) mg/kg - 0.4 0.5 40 - 130 82	LB171088.002		Naphthalene	mg/kg	0.1	3.9	4	60 - 140	97
Phenanthrene mg/kg 0.1 4.8 4 60 - 140 121 Anthracene mg/kg 0.1 4.7 4 60 - 140 119 Fluoranthene mg/kg 0.1 4.5 4 60 - 140 113 Pyrene mg/kg 0.1 4.8 4 60 - 140 121 Benzo(a)pyrene mg/kg 0.1 4.8 4 60 - 140 121 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.2 4 60 - 140 104 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 82			Acenaphthylene	mg/kg	0.1	3.9	4	60 - 140	98
Anthracene mg/kg 0.1 4.7 4 60 - 140 119 Fluoranthene mg/kg 0.1 4.5 4 60 - 140 113 Pyrene mg/kg 0.1 4.8 4 60 - 140 121 Benzo(a)pyrene mg/kg 0.1 4.2 4 60 - 140 104 Surrogates d5-nitrobenzene (Surrogate) mg/kg - 0.4 0.5 40 - 130 82 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 88			Acenaphthene	mg/kg	0.1	4.0	4	60 - 140	100
Fluoranthene mg/kg 0.1 4.5 4 60 - 140 113 Pyrene mg/kg 0.1 4.8 4 60 - 140 121 Benzo(a)pyrene mg/kg 0.1 4.2 4 60 - 140 104 Surrogates d5-nitrobenzene (Surrogate) mg/kg - 0.4 0.5 40 - 130 82 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 88			Phenanthrene	mg/kg	0.1	4.8	4	60 - 140	121
Pyrene mg/kg 0.1 4.8 4 60 - 140 121 Benzo(a)pyrene mg/kg 0.1 4.2 4 60 - 140 104 Surrogates d5-nitrobenzene (Surrogate) mg/kg - 0.4 0.5 40 - 130 82 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 88			Anthracene	mg/kg	0.1	4.7	4	60 - 140	119
Benzo(a)pyrene mg/kg 0.1 4.2 4 60 - 140 104 Surrogates d5-nitrobenzene (Surrogate) mg/kg - 0.4 0.5 40 - 130 82 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 88			Fluoranthene	mg/kg	0.1	4.5	4	60 - 140	113
Surrogates d5-nitrobenzene (Surrogate) mg/kg - 0.4 0.5 40 - 130 82 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 88			Pyrene	mg/kg	0.1	4.8	4	60 - 140	121
2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 88			Benzo(a)pyrene	mg/kg	0.1	4.2	4	60 - 140	104
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	82
d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 92			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	88
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	92

PAH (Polynuclear Aromatic Hydrocarbons) in Water Method: ME-(AU)-IENVIAN420 Sample Number Expected Criteria % Recovery % Parameter Units LB170986.002 74 Naphthalene 0.1 29 40 60 - 140 µg/L Acenaphthylene µg/L 0.1 30 40 60 - 140 75 Acenaphthene µg/L 0.1 31 40 60 - 140 77 0.1 36 40 60 - 140 91 Phenanthrene µg/L 0.1 32 40 60 - 140 80 Anthracene µg/L Fluoranthene µg/L 0.1 34 40 60 - 140 85 0.1 60 - 140 Pyrene 35 40 88 µg/L Benzo(a)pyrene µg/L 0.1 36 40 60 - 140 89 Surrogates d5-nitrobenzene (Surrogate) µg/L 0.3 0.5 40 - 130 64 40 - 130 2-fluorobiphenyl (Surrogate) 0.3 0.5 66 µg/L 76 0.4 0.5 40 - 130 d14-p-terphenyl (Surrogate) µg/L PCBs in Soil Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB171088.002	Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	112

Total Cyanide in soil by Discrete Analyser (Aquakem)

Total Cyanide in soil by Discrete Analyser (Aquakem) Method: ME-(AU)-[ENV]AN						VJAN077/AN287	
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB171340.002	Total Cyanide	mg/kg	0.5	<0.5	0.25	70 - 130	109

Method: ME-(AU)-[ENV]AN040/AN320

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Phenolics in Soil					N	lethod: ME-(A	U)-[ENV]AN289
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB171234.002	Total Phenols	mg/kg	0.1	2.5	2.5	70 - 130	101

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable I	ciements in Soliv	vaste Solids/Materials by ICPOES				Mediod	: ME-(AU)-[ENV]	PAINU4U/AINO
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB171090.002		Arsenic, As	mg/kg	1	350	336.32	79 - 120	106
		Cadmium, Cd	mg/kg	0.3	420	416.6	69 - 131	100
		Chromium, Cr	mg/kg	0.3	38	35.2	80 - 120	107
		Copper, Cu	mg/kg	0.5	330	370.46	80 - 120	90
		Nickel, Ni	mg/kg	0.5	190	210.88	79 - 120	92
		Lead, Pb	mg/kg	1	97	107.87	79 - 120	90
		Zinc, Zn	mg/kg	2	300	301.27	80 - 121	99
race Metals (Disso	olved) in Water by	ICPMS					Method: ME-(AL	J)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B171101.002		Arsenic, As	µg/L	1	20	20	80 - 120	102
		Cadmium, Cd	µg/L	0.1	22	20	80 - 120	108
		Chromium, Cr	µg/L	1	23	20	80 - 120	114
		Copper, Cu	µg/L	1	23	20	80 - 120	113
		Lead, Pb	µg/L	1	22	20	80 - 120	110
		Nickel, Ni	μg/L	1	21	20	80 - 120	105
		Zinc, Zn	μg/L	5	21	20	80 - 120	105
RH (Total Recove	rable Hydrocarbo	ns) in Soil					Method: ME-(AL	J)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B171088.002		TRH C10-C14	mg/kg	20	39	40	60 - 140	98
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	100
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	78
	TRH F Bands	TRH >C10-C16	mg/kg	25	39	40	60 - 140	98
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	85
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	85
RH (Total Recove	rable Hydrocarbo	ns) in Water					Method: ME-(AL	J)-[ENVIAN
Sample Number		Parameter	Units	LOR	Result	Expected		Recovery
_B170986.002		TRH C10-C14	μg/L	50	1100	1200	60 - 140	92
22110000.002		TRH C15-C28	μg/L	200	1400	1200	60 - 140	113
		TRH C29-C36	μg/L	200	1400	1200	60 - 140	119
	TRH F Bands	TRH >C10-C16	μg/L	60	1200	1200	60 - 140	100
		TRH >C16-C34 (F3)	μg/L	500	1400	1200	60 - 140	121
		TRH >C34-C40 (F4)	μg/L	500	730	600	60 - 140	121
OC's in Soil							Method: ME-(AU	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	
_B171087.002	Monocyclic	Benzene	mg/kg	0.1	1.8	2.9	60 - 140	62
	Aromatic	Toluene	mg/kg	0.1	2.1	2.9	60 - 140	74
		Ethylbenzene	mg/kg	0.1	1.9	2.9	60 - 140	67
		m/p-xylene	mg/kg	0.2	4.3	5.8	60 - 140	74
		o-xylene	mg/kg	0.1	2.1	2.9	60 - 140	72
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	5	60 - 140	81
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.4	5	60 - 140	88
		d8-toluene (Surrogate)	mg/kg	-	4.2	5	60 - 140	84
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.1	5	60 - 140	82
OCs in Water							Method: ME-(AL	J)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B171142.002	Monocyclic	Benzene	µg/L	0.5	51	45.45	60 - 140	113
	Aromatic	Toluene	μg/L	0.5	51	45.45	60 - 140	113
		Ethylbenzene	μg/L	0.5	51	45.45	60 - 140	113
		m/p-xylene	μg/L	1	100	90.9	60 - 140	113
		o-xylene	μg/L	0.5	51	45.45	60 - 140	113
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.8	5	60 - 140	95
	-	d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.9	5	60 - 140	97
		de toluono (Surregato)			5.0	-	60 - 140	100

d8-toluene (Surrogate)

5.0

µg/L

5

60 - 140

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water (co	ntinued)						vethod: ME-(A	U)-[ENV]AN4:
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB171142.002	Surrogates	Bromofluorobenzene (Surrogate)	µg/L	-	5.1	5	60 - 140	102
/olatile Petroleum	Hydrocarbons in S	Soil					Nethod: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery ^o
LB171087.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	81
		TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	81
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	5	60 - 140	81
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.4	5	60 - 140	88
		d8-toluene (Surrogate)	mg/kg	-	4.2	5	60 - 140	84
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.1	5	60 - 140	82
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	92
olatile Petroleum	Hydrocarbons in V	Vater					Method: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery ^o
LB171142.002		TRH C6-C10	μg/L	50	1000	946.63	60 - 140	106
		TRH C6-C9	µg/L	40	820	818.71	60 - 140	100
	Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	4.8	5	60 - 140	95
		d4-1,2-dichloroethane (Surrogate)	µg/L	-	4.9	5	60 - 140	97
		d8-toluene (Surrogate)	μg/L	-	5.0	5	60 - 140	100
		Bromofluorobenzene (Surrogate)	µg/L	-	5.1	5	60 - 140	102
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	700	639.67	60 - 140	109

MATRIX SPIKES

Method: ME-(AU)-[ENV]AN420

Method: ME-(AU)-IENVIAN289

Method: ME-(AU)-[ENV]AN040/AN320

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Metho	od: ME-(AL	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE191303.001	LB171091.004	Mercury	mg/kg	0.05	0.28	0.02017326631	0.2	130

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

	-							()
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE191303.001	LB171088.024		Naphthalene	mg/kg	0.1	0	4	97
			2-methylnaphthalene	mg/kg	0.1	0	-	-
			1-methylnaphthalene	mg/kg	0.1	0	-	-
			Acenaphthylene	mg/kg	0.1	0	4	98
			Acenaphthene	mg/kg	0.1	0	4	100
			Fluorene	mg/kg	0.1	0	-	-
			Phenanthrene	mg/kg	0.1	0.03	4	101
			Anthracene	mg/kg	0.1	0.03	4	98
			Fluoranthene	mg/kg	0.1	0.01	4	93
			Pyrene	mg/kg	0.1	0.01	4	102
			Benzo(a)anthracene	mg/kg	0.1	0.02	-	-
			Chrysene	mg/kg	0.1	0.02	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.01	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	0.01	-	-
			Benzo(a)pyrene	mg/kg	0.1	0.01	4	106
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.01	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	0	-	-
			Benzo(ghi)perylene	mg/kg	0.1	0.01	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	0	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.242</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	0.242	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.121</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	0.121	-	-
	_		Total PAH (18)	mg/kg	0.8	0	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.41	-	82
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	86
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.44	-	82
otal Cyanide in	soil by Discrete Analyse	er (Aquakem)					Method: N	IE-(AU)-[ENV]A
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike
SE191305.001	LB171340.005		Total Cyanide	mg/kg	0.5	<0.5	<0.5	0.25

Total	Phenol	ics i	n Soll

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE191305.009	LB171234.007	Total Phenols	mg/kg	0.1	2.7	0.6	2.5	83

Recovery% 76 73 73 73 73 72
73 73 73
73 73
73
72
70 ④
69 ④
J)-[ENV]AN318
Recovery%
102
110
117
118
111
AL e

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample	issolved) in Water by Sample Number		Parameter	Units	LOR	Result	Original	hod: ME-(AU Spike	Recover
SE191216.007	LB171101.004				5	24	0.657	20	114
			Zinc, Zn	μg/L	5	24			
RH (Total Reco	overable Hydrocarbor	is) in Soll					Met	hod: ME-(AU)-[ENV]AN
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
SE191303.001	LB171088.024		TRH C10-C14	mg/kg	20	0	40	80	
			TRH C15-C28	mg/kg	45	0	40	85	
			TRH C29-C36	mg/kg	45	0	40	80	
			TRH C37-C40	mg/kg	100	0	-	-	
			TRH C10-C36 Total	mg/kg	110	0	-	-	
			TRH C10-C40 Total (F bands)	mg/kg	210	0	-	-	
		TRH F Bands	TRH >C10-C16	mg/kg	25	0	40	83	
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	0	-	-]
			TRH >C16-C34 (F3)	mg/kg	90	0	40	85	1
			TRH >C34-C40 (F4)	mg/kg	120	0	-	-	1
OC's in Soil							Matt		
								hod: ME-(AU	
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE191303.001	LB171087.004	Monocyclic	Benzene	mg/kg	0.1	1.9	0.01	2.9	66
		Aromatic	Toluene	mg/kg	0.1	1.8	0	2.9	62
			Ethylbenzene	mg/kg	0.1	1.8	0	2.9	61
			m/p-xylene	mg/kg	0.2	3.9	0	5.8	66
			o-xylene	mg/kg	0.1	1.8	0	2.9	63
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	0.01	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	3.79	-	78
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.1	4.22	-	102
			d8-toluene (Surrogate)	mg/kg	-	4.4	3.78	-	88
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.7	3.85	-	74
		Totals	Total Xylenes	mg/kg	0.3	5.7	0	-	-
			Total BTEX	mg/kg	0.6	11	0.01	-	-
OCs in Water							Moti	hod: ME-(AU	
					100				
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE191279.006	LB171142.024	Monocyclic	Benzene	µg/L	0.5	50	0.02	45.45	109
		Aromatic	Toluene	μg/L	0.5	53	0.02	45.45	116
			Ethylbenzene	µg/L	0.5	55	0.01	45.45	120
			m/p-xylene	µg/L	1	110	0.02	90.9	125
			o-xylene	µg/L	0.5	55	0.01	45.45	122
		Polycyclic	Naphthalene	µg/L	0.5	<0.5	0.02	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.3	5.05	-	105
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.9	4.63	-	97
			d8-toluene (Surrogate)	µg/L	-	4.9	4.85	-	98
			Bromofluorobenzene (Surrogate)	µg/L	-	5.2	4.75	-	103
/olatile Petroleu	m Hydrocarbons in S	oil					Mett	hod: ME-(AU	
	-				100	D 1/			
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE191303.001	LB171087.004		TRH C6-C10	mg/kg	25	<25	0	24.65	77
			TRH C6-C9	mg/kg	20	<20	0	23.2	77
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	3.79	-	78
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.1	4.22	-	102
			d8-toluene (Surrogate)	mg/kg	-	4.4	3.78	-	88
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.7	3.85	-	74
			Benzene (F0)	mg/kg	0.1	1.9	0.01	-	-
		VPH F		mg/kg	25	<25	-0.01	7.25	91
		VPH F Bands	TRH C6-C10 minus BTEX (F1)						
olatile Petroleu	m Hydrocarbons in W	Bands	TRH C6-C10 minus BTEX (F1)				Met	nod: ME-(ALI	
	m Hydrocarbons in W	Bands /ater			108-	Beault		hod: ME-(AU	
QC Sample	Sample Number	Bands /ater	Parameter	Units	LOR	Result	Original	Spike	Recov
<mark>′olatile Petroleu</mark> QC Sample SE191279.006	-	Bands /ater	Parameter TRH C6-C10	Units µg/L	50	1100	Original 0	Spike 946.63	Recove 112
QC Sample	Sample Number	Bands /ater	Parameter TRH C6-C10 TRH C6-C9	Units		1100 880	Original 0 0	Spike	Recove 112 107
QC Sample	Sample Number	Bands /ater	Parameter TRH C6-C10	Units µg/L	50	1100	Original 0	Spike 946.63	Recov 112
QC Sample	Sample Number	Bands /ater	Parameter TRH C6-C10 TRH C6-C9	Units µg/L µg/L	50 40	1100 880	Original 0 0	Spike 946.63 818.71	Recov 112 107
QC Sample	Sample Number	Bands /ater	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	Units µg/L µg/L µg/L	50 40 -	1100 880 5.3	Original 0 0 5.05	Spike 946.63 818.71	Recov 112 107 105
QC Sample	Sample Number	Bands /ater	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	Units µg/L µg/L µg/L µg/L	50 40 - -	1100 880 5.3 4.9	Original 0 0 5.05 4.63	Spike 946.63 818.71 -	Recove 112 107 105 97

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleur	m Hydrocarbons in Wa	ater (continued)					Mett	nod: ME-(AL	J)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE191279.006	LB171142.025	VPH F	TRH C6-C10 minus BTEX (F1)	μg/L	50	730	-0.08	639.67	115

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

SGS				С	HA	IN C	DF C	UST	OD	Y &	AN	IALY	'SI	S RI	EQL	JEST						Pag	e	_ of		
SGS Environmental S	ervices	Compa	any Nan	ne:	Austr	alian (Geotech	nnical						Projec	t Nam	e/No:	AG	-369								
Unit 16, 33 Maddox St	reet	Addres	SS:		2 Shi	rley St	reet, R	ose Hill	, NSV	1				Purcha	ase Or	der No:	AG	-369_1	l quote	e MMG	3TN	I				
Alexandria NSW 2015														Result	s Req	uired By:	Sta	ndard	TAT							
Telephone No: (02) 85	940400													Teleph	none:											
Facsimile No: (02) 85	940499	Contac	ct Name	:	Natha	an Sm	ith							Facsin	nile:											
Email: au.samplereceipt.sy	dney@sgs.com	1												Email	Result	s:	info	@aus	tgeo.c	om.au	u					
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SolL	PRESERVATIVE	NO OF CONTAINERS	CL10	SV9	Asbestos ID	Phenols	CEC and pHcacl2	втех		Cyanide												
E1	4-04-19	1		x		2	Х	x	X	x				x												1
E2	4-04-19	2		X		2	x		X									-	SGS	EHS		exand	ria La	borator	у	
E3	4-04-19	3		X		2	х		x					-												
E4	4-04-19	Y	-	X		2	X	x	x									1								
E5	4-04-19	5		x		1	X			x				1				1	CE	10	12	06	CO			
E6	4-04-19	6	-	x		2	x		x									1	JE Beci	l 9 eived	1:0	5 - AC	CO or - 20	1 9		
E7	4-04-19	7		X		2	x		X									1	11001	01000		• ••				\mathcal{F}
E8	4-04-19	9	_	x		1	x											_								
E9	4-04-19	9		x		2	x	x	X	x									Τ							
Relinquished By: NS		Da	ate/Tim	l e: 05-0	04-19		L			R	eceiv	ed By:	N	Jes	27			Date	/Time	SI	91	10		2.	15	
Relinquished By:			ate/Tim									ed By:			2,	•			/Time		(/	19		X	()	
Samples Intact: Yes/ No		Te	empera	ure:	Ambie	ent / C	hilled					e Coole	r Se	ealed:	Yes/	No		Labo	ratory	Quo	tatio	on No:				
		Co	ommen	ts:																						

.

SGS				C	HA	IN C	DF C	UST	OD.	Y &	AN	IALY	/SI	S RI	EQI	JEST	ź					Page		of	
SGS Environmental S	ervices	Compan	y Nam	ne:	Austr	alian (Geotech	nnical					-	Projec	t Nan	ne/No:	A	G-369							
Unit 16, 33 Maddox St	reet	Address	:		2 Shir	rley St	reet, R	ose Hill,	NSW	l.				Purch	ase O	rder No:	A	G-369_	_1 qu	ote MM	1G3TN	l			
Alexandria NSW 2015																uired By:	S	andar	d TA	т					
Telephone No: (02) 85														Teleph			-								
Facsimile No: (02) 85		Contact	Name	: _	Natha	an Smi	ith							Facsir											
Email: au.samplereceipt.sy	dney@sgs.com		1				n	1	-					Email	Resu	ts:	in	fo@au	stgeo	.com.	au				
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	CL10	SV9	Asbestos ID	Phenols	CEC and pHcacl2	BTEX		Cyanide											
Rin-1	4-4-19	10	x	v		4	x																		
Split	4-4-19	11	 	X			x																		
Trip Spike/Blank	4-4-19	12		X		1						x													
Relinquished By:NS			e/Tim		4-19							ed By:	1	Jess	P				e/Tim	-	5/4,	19	5	2:15	
Relinquished By:			e/Tim									ed By:							e/Tim						
Samples Intact. Yes/ No					Ambie	ent /C	hilled			S	ample	e Coole	er Se	ealed:	Yes/	No		Lab	orato	ory Qu	otatio	on No:			
		Cor	nment	ts:																					

SAMPLE RECEIPT ADVICE

CLIENT DETAIL	S	LABORATORY DETA	LABORATORY DETAILS					
Contact	Nathan Smith	Manager	Huong Crawford					
Client	AUSTRALIAN GEOTECHNICAL PTY LTD	Laboratory	SGS Alexandria Environmental					
Address	2 SHIRLEY STREET ROSEHILL NSW 2144	Address	Unit 16, 33 Maddox St Alexandria NSW 2015					
Telephone	(Not specified)	Telephone	+61 2 8594 0400					
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499					
Email	nathan@austgeo.com.au	Email	au.environmental.sydney@sgs.com					
Project	AG-369	Samples Received	Fri 5/4/2019					
Order Number	AG-369_1	Report Due	Fri 12/4/2019					
Samples	13	SGS Reference	SE191305					

_ SUBMISSION DETAILS

This is to confirm that 13 samples were received on Friday 5/4/2019. Results are expected to be ready by COB Friday 12/4/2019. Please quote SGS reference SE191305 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled	Yes	Complete documentation received	Yes
Sample container provider	SGS	Sample cooling method	Ice Bricks
Samples received in correct containers	Yes	Sample counts by matrix	12 Soil, 1 Water
Date documentation received	5/4/2019	Type of documentation received	COC
Number of eskies/boxes received		Samples received in good order	Yes
Samples received without headspace	Yes	Sample temperature upon receipt	13.8°C
Sufficient sample for analysis	Yes	Turnaround time requested	Standard

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

__ CLIENT DETAILS __

Client AUSTRALIAN GEOTECHNICAL PTY LTD

Project AG-369

UNINAN	RY OF ANALYSIS								
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Phenolics in Soil	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	E1	29	14	26	11	1	10	12	8
002	E2	-	-	26	-	-	10	12	8
003	E3	-	-	26	-	-	10	12	8
004	E4	29	14	26	11	-	10	12	8
005	E5	-	-	26	-	1	10	12	8
006	E6	-	-	26	-	-	10	12	8
007	E7	-	-	26	-	-	10	12	8
008	E8	-	-	26	-	-	10	12	8
009	E9	29	14	26	11	1	10	12	8
011	Split	-	-	26	-	-	10	12	8
012	Trip Spike	-	-	-	-	-	-	12	-
013	Trip Blank	-	-	-	-	-	-	12	8

_ CONTINUED OVERLEAF

__ CLIENT DETAILS __

Client AUSTRALIAN GEOTECHNICAL PTY LTD

Project AG-369

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	Total Cyanide in soil by Discrete Analyser	Total Recoverable Elements in Soil/Waste
001	E1	2	1	1	1	7
002	E2	2	1	1	-	7
003	E3	2	1	1	-	7
004	E4	2	1	1	-	7
005	E5	-	1	1	-	7
006	E6	2	1	1	-	7
007	E7	2	1	1	-	7
008	E8	-	1	1	-	7
009	E9	2	1	1	-	7
011	Split	-	1	1	-	7
013	Trip Blank	-	-	1	-	-

SAMPLE RECEIPT ADVICE

__ CLIENT DETAILS __

Client AUSTRALIAN GEOTECHNICAL PTY LTD

Project AG-369

- SUMMARY	OF ANALYSIS						
No.	Sample ID	Mercury (dissolved) in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
010	Rin -1	1	22	7	10	12	8

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

APPENDIX C

SUPPORTING INFORMATION

Image 1: Eastern View of Site

Image 2: Site View looking south-east

Image 3: Natural Soil Profile

Image 4: Concrete Coring Borehole Numbered 1

